Pregunta
upstudy study bank question image url

Find the \( y \)-intercept and \( x \)-intercept of the line. \[ -5 x+7 y=12 \]

Ask by Elliott Welch. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The y-intercept is (0, 12/7) and the x-intercept is (−12/5, 0).

Solución

To find the y-intercept, set x = 0 in the equation:   -5(0) + 7y = 12 ⟹ 7y = 12 ⟹ y = 12/7. Thus, the y-intercept is (0, 12/7). To find the x-intercept, set y = 0 in the equation:   -5x + 7(0) = 12 ⟹ -5x = 12 ⟹ x = -12/5. Thus, the x-intercept is (‑12/5, 0).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the \( y \)-intercept, set \( x = 0 \) in the equation: \[ -5(0) + 7y = 12 \implies 7y = 12 \implies y = \frac{12}{7} \] So, the \( y \)-intercept is \( \left(0, \frac{12}{7}\right) \). To find the \( x \)-intercept, set \( y = 0 \) in the equation: \[ -5x + 7(0) = 12 \implies -5x = 12 \implies x = -\frac{12}{5} \] Thus, the \( x \)-intercept is \( \left(-\frac{12}{5}, 0\right) \). Now you know where the line crosses the axes, but let’s talk about why this matters! Finding intercepts is SUPER handy for graphing linear equations quickly. You can plot these two points and easily sketch the whole line, giving you a visual representation of relationships and trends. This method is often less daunting than substituting in various \( x \) values, especially when dealing with more complex equations! Additionally, keep in mind that when a line has both intercepts plotted, it provides greater context. For instance, you can determine the slope by calculating the rise over run between the two points. In applications like economics or physics, this could represent costs versus outputs or distance versus time, making intercepts not just theoretical, but practically useful in real-world scenarios!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad