Pregunta
upstudy study bank question image url

5. a. \( x<4 \) Here, The replacement set \( w=\{0,1,2,3,4,5 \) ? The given inequality is, \( x \angle 4 \) when \( x=0,0<4 \) is true when \( x=1,1<4 \) is true when \( x=2,2 \angle 4 \) is true when \( x=3,3 \angle 4 \) is true when \( x=4,4<4 \) is false when \( x=5,5<4 \) is folse

Ask by Bates Turner. in Nepal
Dec 01,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution set for \( x < 4 \) with the replacement set \( w = \{0, 1, 2, 3, 4, 5\} \) is \( \{0, 1, 2, 3\} \).

Solución

It looks like you're working with the inequality \( x < 4 \) and a replacement set \( w = \{0, 1, 2, 3, 4, 5\} \). Let's analyze the inequality with the values in the replacement set. The inequality \( x < 4 \) means we are looking for values of \( x \) that are less than 4. Let's evaluate each element in the replacement set \( w \): 1. When \( x = 0 \): - \( 0 < 4 \) is **true**. 2. When \( x = 1 \): - \( 1 < 4 \) is **true**. 3. When \( x = 2 \): - \( 2 < 4 \) is **true**. 4. When \( x = 3 \): - \( 3 < 4 \) is **true**. 5. When \( x = 4 \): - \( 4 < 4 \) is **false**. 6. When \( x = 5 \): - \( 5 < 4 \) is **false**. Now, let's summarize the results: - The values of \( x \) from the replacement set \( w \) that satisfy the inequality \( x < 4 \) are: - \( 0, 1, 2, 3 \) - The values that do not satisfy the inequality are: - \( 4, 5 \) So, the solution set for the inequality \( x < 4 \) with the given replacement set is \( \{0, 1, 2, 3\} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The inequality \( x < 4 \) beautifully illustrates how certain numbers fit snugly within boundaries while others don't quite make the cut. In your replacement set \( w = \{0, 1, 2, 3, 4, 5\} \), the values 0, 1, 2, and 3 proudly pass the test—like eager participants in a game. However, both 4 and 5 fail to meet the challenge as they venture beyond the line drawn at 4. For understanding inequalities, think of a number line as your best friend. Visualizing \( x < 4 \) helps you see all numbers to the left of 4 as valid options (infinity stretches left!), while anything at or beyond 4 must stay home. Mistakes occur when we forget to test our endpoints, so always check!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad