Pregunta
upstudy study bank question image url

Two sides of an isosceles triangle are 22 cm and 61 cm . What is the area of the triangle, in \( \mathrm{cm}^{2} \) ? Twee sye van 'n gelykbenige driehoek is 22 cm cn 61 cm . Wat is die oppervlakte van die driehoek, in \( \mathrm{cm}^{2} \) ? \( \begin{array}{llll}\text { (1) } 671 & \text { (2) } 660 & \text { (3) } 576 & \text { (4) } 630 \\ \text { (5) Not enough information / Nie genoeg inligting nie } & \end{array} \)

Ask by Moran Grant. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area of the triangle is 660 cm².

Solución

We are given an isosceles triangle with two known side lengths 22 cm and 61 cm. Since a triangle must satisfy the triangle inequality, the only possibility is that the two equal sides are 61 cm and 61 cm, and the base is 22 cm. (A triangle with two sides of 22 cm and a base of 61 cm would not work because 22 + 22 = 44, which is less than 61.) Now, to find the area of the triangle, we can use two methods: Method 1: Altitude of the Triangle 1. Draw the altitude from the vertex opposite the base (which will be perpendicular to the base and bisect it). Since the base is 22 cm, half of it is 11 cm. 2. The altitude h can be found using the Pythagorean theorem:   h = √(61² – 11²)    = √(3721 – 121)    = √3600    = 60 cm 3. The area A is then:   A = (1/2) × base × height    = (1/2) × 22 × 60    = 11 × 60    = 660 cm² Method 2: Heron’s Formula 1. The sides of the triangle are 61, 61, and 22. The semi-perimeter s is:   s = (61 + 61 + 22) / 2    = 144 / 2    = 72 cm 2. The area A is given by:   A = √[s(s - 61)(s - 61)(s - 22)]    = √[72 × 11 × 11 × 50]    = √[72 × 121 × 50]    = √[3600 × 121]   (because 72×50 = 3600)    = √(3600) × √(121)    = 60 × 11    = 660 cm² Both methods give us the same area: 660 cm². Thus, the correct answer is: (2) 660

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

In an isosceles triangle, two sides are equal, and in this case, we have one side that measures 22 cm and another that measures 61 cm. To find the area, we first need to determine the height of the triangle. Drawing a perpendicular from the apex to the base divides the triangle into two right triangles. From there, we can use the Pythagorean theorem to calculate the height and then use the area formula \(\frac{1}{2} \times \text{base} \times \text{height}\). Now, remember not to confuse the sides! Since the two equal sides must be the same, we can only use 22 cm as the equal length. Thus, technically, an isosceles triangle with sides 22 cm and 61 cm doesn't exist since two sides cannot be shorter than one. So, check your triangle measurements before proceeding to find the area!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad