\[ \begin{array}{l} a(3)^{3} \times(2)^{4} \times 3= \\ b \cdot(5)^{7} \div(5)^{2}= \\ \cdot\left[\left[(5)^{3}\right]^{4}\right]^{2}= \\ \text { d. }\left[(3)^{6}\right]^{1}= \end{array} \] \[ \begin{array}{l} F(6)^{4} \cdot(6)^{3} \cdot(6)^{2}= \\ G \cdot \frac{(12)^{24}}{(12)^{20}}= \end{array} \] \[ \mathrm{H}^{\left(\frac{2}{2}\right)^{18}}= \] \( (4)^{2} \cdot(4)^{2}= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
Let's start breaking this down in a playful and engaging way! For the first equation, you can simplify \( a(3)^3 \times (2)^4 \times 3 \) easily. First, evaluate each component: \( (3)^3 = 27 \), \( (2)^4 = 16 \), and \( 3 \) at the end can just be treated as a multiplying factor. So it becomes \( a \times 27 \times 16 \times 3 \), which ultimately leads you to a lovely product. When you get to \( b \cdot (5)^7 \div (5)^2 \), don't fret over division! It’s a matter of using the law of exponents: \( (5^7) / (5^2) = 5^{7-2} = 5^5 \) and then just multiply by \( b \). Maths really can be fun when you see the patterns! Now, have fun working through the powers and remember that simplification is your best friend! Happy calculating!
