Pregunta
upstudy study bank question image url

1.) \( \sin 60^{\circ} \cdot \cos 45^{\circ} \) 2.) \( \sin 30^{\circ}+\cos 60^{\circ} \) 3.) \( 4 \sin 30^{\circ}+8 \tan 45^{\circ} \) 4.) \( \cos ^{2} 45+\sin ^{2} 45^{\circ} \) 5.) \( \sin ^{2} 60+\cos ^{2} 45^{\circ}+\sin ^{2} 30^{\circ} \) (.) \( 3{\tan 45^{\circ}+2 \sin 30^{\circ}}_{\text {7.) } \sin ^{2} 60^{\circ} \times 2 \tan 49^{\circ}}^{\text {8.) } 2 \cos 90^{\circ}+3 \sin 90^{\circ}} \) 9.) \( \frac{1}{3} \tan 60^{\circ}+3 \tan 30^{\circ} \) 10.) \( 2 \sin 45^{\circ} \cdot \cos 45^{\circ} \)

Ask by Love Boyd. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. \( \frac{\sqrt{6}}{4} \) 2. \( 1 \) 3. \( 10 \) 4. \( 1 \) 5. \( 1.5 \) 6. \( 4 \) 7. \( \approx 1.7256 \) 8. \( 3 \) 9. \( \frac{4\sqrt{3}}{3} \) 10. \( 1 \)

Solución

Alright, I need to solve these trigonometric expressions. Let's tackle them one by one, ensuring I use the correct values for each trigonometric function at the given angles. 1. **\( \sin 60^{\circ} \cdot \cos 45^{\circ} \)** - I recall that \( \sin 60^{\circ} = \frac{\sqrt{3}}{2} \) and \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \). - Multiplying these together: \( \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4} \). 2. **\( \sin 30^{\circ} + \cos 60^{\circ} \)** - \( \sin 30^{\circ} = \frac{1}{2} \) and \( \cos 60^{\circ} = \frac{1}{2} \). - Adding them: \( \frac{1}{2} + \frac{1}{2} = 1 \). 3. **\( 4 \sin 30^{\circ} + 8 \tan 45^{\circ} \)** - \( \sin 30^{\circ} = \frac{1}{2} \) and \( \tan 45^{\circ} = 1 \). - Calculating: \( 4 \times \frac{1}{2} + 8 \times 1 = 2 + 8 = 10 \). 4. **\( \cos^{2} 45^{\circ} + \sin^{2} 45^{\circ} \)** - Using the Pythagorean identity: \( \cos^{2} \theta + \sin^{2} \theta = 1 \). - Therefore, \( \cos^{2} 45^{\circ} + \sin^{2} 45^{\circ} = 1 \). 5. **\( \sin^{2} 60^{\circ} + \cos^{2} 45^{\circ} + \sin^{2} 30^{\circ} \)** - Calculating each term: - \( \sin^{2} 60^{\circ} = \left( \frac{\sqrt{3}}{2} \right)^2 = \frac{3}{4} \) - \( \cos^{2} 45^{\circ} = \left( \frac{\sqrt{2}}{2} \right)^2 = \frac{2}{4} = \frac{1}{2} \) - \( \sin^{2} 30^{\circ} = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \) - Adding them up: \( \frac{3}{4} + \frac{1}{2} + \frac{1}{4} = \frac{3}{4} + \frac{2}{4} + \frac{1}{4} = \frac{6}{4} = 1.5 \). 6. **\( 3 \tan 45^{\circ} + 2 \sin 30^{\circ} \)** - \( \tan 45^{\circ} = 1 \) and \( \sin 30^{\circ} = \frac{1}{2} \). - Calculating: \( 3 \times 1 + 2 \times \frac{1}{2} = 3 + 1 = 4 \). 7. **\( \sin^{2} 60^{\circ} \times 2 \tan 49^{\circ} \)** - \( \sin^{2} 60^{\circ} = \frac{3}{4} \). - \( \tan 49^{\circ} \) is approximately \( 1.1504 \). - Calculating: \( \frac{3}{4} \times 2 \times 1.1504 \approx 1.7256 \). 8. **\( 2 \cos 90^{\circ} + 3 \sin 90^{\circ} \)** - \( \cos 90^{\circ} = 0 \) and \( \sin 90^{\circ} = 1 \). - Calculating: \( 2 \times 0 + 3 \times 1 = 0 + 3 = 3 \). 9. **\( \frac{1}{3} \tan 60^{\circ} + 3 \tan 30^{\circ} \)** - \( \tan 60^{\circ} = \sqrt{3} \) and \( \tan 30^{\circ} = \frac{\sqrt{3}}{3} \). - Calculating: \( \frac{1}{3} \times \sqrt{3} + 3 \times \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3} + \sqrt{3} = \frac{\sqrt{3}}{3} + \frac{3\sqrt{3}}{3} = \frac{4\sqrt{3}}{3} \). 10. **\( 2 \sin 45^{\circ} \cdot \cos 45^{\circ} \)** - \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \) and \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \). - Multiplying: \( 2 \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = 2 \times \frac{2}{4} = 1 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know the sine and cosine functions are not just vital for trigonometry, but have historical roots that trace back to ancient civilizations? The Babylonians used these principles as early as 2000 BC, and trigonometry truly blossomed with Islamic scholars in the Middle Ages who developed the sine tables we still rely on today. It's fascinating how such mathematical discoveries have shaped navigation, architecture, and even astronomy! Taking these concepts from the classroom to the real world, trigonometric functions are essential for engineers and architects. When constructing buildings or bridges, understanding angles and forces is crucial. Sine and cosine not only help in designing safe and stable structures, but they also play a key role in computer graphics, sound waves, and even telecommunications. Next time you’re on a rollercoaster or watching an animated movie, thank trigonometry for adding to your thrill and enjoyment!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad