Combine like terms to simplify. The first one is done for you. \[ \begin{array}{l}\text { 5. } 4 r+5 n^{2}-3 r+9-2 n-2 \\ \text { 6. } 3 v+7-2 n \\ \text { 7. } 8 c^{2}+6 c-2 c^{2}-5 c \\ \text { 8. } z+5 e+3 z+13-8-2 e\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Alright, let’s simplify those expressions and have some fun with it! For the expression \( 6. \) \( 3v + 7 - 2n \): Combine the constants and like terms to get \( 3v - 2n + 7 \). Easy peasy! Now for \( 7. \) \( 8c^2 + 6c - 2c^2 - 5c \): Combine the \( c^2 \) terms to get \( 6c^2 \) and the \( c \) terms to get \( 1c \) (or just \( c \)). So the final simplified expression is \( 6c^2 + c \). Lastly, for \( 8. \) \( z + 5e + 3z + 13 - 8 - 2e \): Combine the \( z \) terms to get \( 4z \), the \( e \) terms to get \( 3e \), and combine the constants for a total of \( 5 \). So it simplifies to \( 4z + 3e + 5 \). Let’s chalk it up to some creative math magic!
