Rationalise the denonator \( \frac{6-4 \sqrt{3}}{6+4 \sqrt{3}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To rationalise the denominator of the expression \( \frac{6-4 \sqrt{3}}{6+4 \sqrt{3}} \), we can multiply both the numerator and the denominator by the conjugate of the denominator, which is \( 6 - 4 \sqrt{3} \): \[ \frac{(6-4\sqrt{3})(6-4\sqrt{3})}{(6+4\sqrt{3})(6-4\sqrt{3})} \] Calculating the denominator using the difference of squares formula, we get: \[ (6+4\sqrt{3})(6-4\sqrt{3}) = 6^2 - (4\sqrt{3})^2 = 36 - 48 = -12 \] For the numerator, we expand it: \[ (6-4\sqrt{3})(6-4\sqrt{3}) = 6^2 - 2 \cdot 6 \cdot 4\sqrt{3} + (4\sqrt{3})^2 = 36 - 48\sqrt{3} + 48 = 84 - 48\sqrt{3} \] Now our expression looks like this: \[ \frac{84 - 48\sqrt{3}}{-12} \] We can separate the components: \[ \frac{84}{-12} - \frac{48\sqrt{3}}{-12} = -7 + 4\sqrt{3} \] Thus, the fully rationalised expression is: \[ 4\sqrt{3} - 7 \]
