Responder
Here are the simplified factorizations:
15. \( \frac{1}{2}(a-4b^{3})(a+4b^{3}) \)
16. \( 20(a-2)(-a+8) \)
17. \( 2(x^{2}-y)(x^{2}+y)(x^{4}+y^{2}) \)
18. \( \frac{1}{5}xy(x-10y)(x+10y) \)
19. \( (2p+3)(3m-2)(3m+2) \)
20. \( 3k(k-m)(k+m+1) \)
Solución
Factor the expression by following steps:
- step0: Factor:
\(\frac{1}{2}a^{2}-8b^{6}\)
- step1: Factor the expression:
\(\frac{1}{2}\left(a^{2}-16b^{6}\right)\)
- step2: Factor the expression:
\(\frac{1}{2}\left(a-4b^{3}\right)\left(a+4b^{3}\right)\)
Factor the expression \( 2 x^{8}-2 y^{4} \).
Factor the expression by following steps:
- step0: Factor:
\(2x^{8}-2y^{4}\)
- step1: Factor the expression:
\(2\left(x^{8}-y^{4}\right)\)
- step2: Factor the expression:
\(2\left(x^{4}-y^{2}\right)\left(x^{4}+y^{2}\right)\)
- step3: Evaluate:
\(2\left(x^{2}-y\right)\left(x^{2}+y\right)\left(x^{4}+y^{2}\right)\)
Factor the expression \( \frac{1}{5} x^{3} y-20 x y^{3} \).
Factor the expression by following steps:
- step0: Factor:
\(\frac{1}{5}x^{3}y-20xy^{3}\)
- step1: Factor the expression:
\(\frac{1}{5}xy\left(x^{2}-100y^{2}\right)\)
- step2: Factor the expression:
\(\frac{1}{5}xy\left(x-10y\right)\left(x+10y\right)\)
Factor the expression \( 3 k\left(k^{2}-m^{2}\right)-3 k(m-k) \).
Factor the expression by following steps:
- step0: Factor:
\(3k\left(k^{2}-m^{2}\right)-3k\left(m-k\right)\)
- step1: Rewrite the expression:
\(3k\left(k-m\right)\left(k+m\right)+3k\left(k-m\right)\)
- step2: Factor the expression:
\(3k\left(k-m\right)\left(k+m+1\right)\)
Factor the expression \( 4(2 a-1)^{2}-36(a-3)^{2} \).
Factor the expression by following steps:
- step0: Factor:
\(4\left(2a-1\right)^{2}-36\left(a-3\right)^{2}\)
- step1: Factor the expression:
\(4\left(\left(2a-1\right)^{2}-9\left(a-3\right)^{2}\right)\)
- step2: Factor the expression:
\(4\left(\left(2a-1\right)+3\left(a-3\right)\right)\left(\left(2a-1\right)-3\left(a-3\right)\right)\)
- step3: Calculate:
\(4\left(5a-10\right)\left(-a+8\right)\)
- step4: Factor the expression:
\(4\times 5\left(a-2\right)\left(-a+8\right)\)
- step5: Simplify the expression:
\(20\left(a-2\right)\left(-a+8\right)\)
Factor the expression \( 9 m^{2}(2 p+3)-4(2 p+3) \).
Factor the expression by following steps:
- step0: Factor:
\(9m^{2}\left(2p+3\right)-4\left(2p+3\right)\)
- step1: Factor the expression:
\(\left(2p+3\right)\left(9m^{2}-4\right)\)
- step2: Factor the expression:
\(\left(2p+3\right)\left(3m-2\right)\left(3m+2\right)\)
Here are the factorizations for each expression:
15. For the expression \( \frac{1}{2} a^{2}-8 b^{6} \):
\[
\frac{1}{2}(a-4b^{3})(a+4b^{3})
\]
16. For the expression \( 4(2 a-1)^{2}-36(a-3)^{2} \):
\[
20(a-2)(-a+8)
\]
17. For the expression \( 2 x^{8}-2 y^{4} \):
\[
2(x^{2}-y)(x^{2}+y)(x^{4}+y^{2})
\]
18. For the expression \( \frac{1}{5} x^{3} y-20 x y^{3} \):
\[
\frac{1}{5}xy(x-10y)(x+10y)
\]
19. For the expression \( 9 m^{2}(2 p+3)-4(2 p+3) \):
\[
(2p+3)(3m-2)(3m+2)
\]
20. For the expression \( 3 k\left(k^{2}-m^{2}\right)-3 k(m-k) \):
\[
3k(k-m)(k+m+1)
\]
These factorizations simplify the expressions and make further calculations easier.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución