ework: HW2 Spring 2025 Solve the linear inequality. Express the solution set using set-builder and interval notation. Graph the solution set. \[ 8(x+4)-3 x \leq 8(x-1)+19 \] The solution set expressed in set-builder notation is \( \{x \mid 1\} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the inequality \( 8(x+4)-3x \leq 8(x-1)+19 \), first simplify both sides. Distributing gives us \( 8x + 32 - 3x \leq 8x - 8 + 19 \). This simplifies to \( 5x + 32 \leq 8x + 11 \). Rearranging leads to \( 32 - 11 \leq 8x - 5x \), which simplifies to \( 21 \leq 3x \) or \( x \geq 7 \). Expressing this in set-builder notation, we write it as \( \{x \mid x \geq 7\} \). In interval notation, the solution can be expressed as \( [7, \infty) \). In graphing this solution set, you can plot a solid dot at 7 on a number line, extending the line to the right toward infinity – this shows that all values greater than or equal to 7 are included in the solution. Remember, the solid dot indicates that 7 is part of the solution!
