Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( x = \frac{17 - 3y}{10} \)
Solución
To solve for x in the equation
4x + 3y = 17 – 6x,
we first collect all the terms with x on one side. Adding 6x to both sides gives:
4x + 6x + 3y = 17
10x + 3y = 17
Next, isolate the term with x by subtracting 3y from both sides:
10x = 17 – 3y
Finally, divide both sides by 10:
x = (17 – 3y) / 10
Thus, the solution is:
x = (17 – 3y) / 10
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To solve for \( x \) in the equation \( 4x + 3y = 17 - 6x \), we first rearrange the equation to isolate \( x \). 1. Add \( 6x \) to both sides: \[ 4x + 6x + 3y = 17 \] This simplifies to: \[ 10x + 3y = 17 \] 2. Now, isolate \( x \) by subtracting \( 3y \) from both sides: \[ 10x = 17 - 3y \] 3. Finally, divide by 10: \[ x = \frac{17 - 3y}{10} \] Thus, the solution for \( x \) in terms of \( y \) is: \[ x = \frac{17 - 3y}{10} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium