Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve the equation \( 6x^2 + 7x + 2 = 0 \), we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 6 \), \( b = 7 \), and \( c = 2 \). 1. First, calculate the discriminant: \[ b^2 - 4ac = 7^2 - 4 \cdot 6 \cdot 2 = 49 - 48 = 1 \] 2. Now, plug the values into the quadratic formula: \[ x = \frac{-7 \pm \sqrt{1}}{2 \cdot 6} = \frac{-7 \pm 1}{12} \] 3. This gives us two possible solutions: \[ x_1 = \frac{-7 + 1}{12} = \frac{-6}{12} = -\frac{1}{2} \] \[ x_2 = \frac{-7 - 1}{12} = \frac{-8}{12} = -\frac{2}{3} \] So the solutions for \( x \) are \( x = -\frac{1}{2} \) and \( x = -\frac{2}{3} \).
