Pregunta
upstudy study bank question image url

You are given three white balls, one red ball, and two identical boxes. You are asked to distribute the balls in the boxes in any way you like. You then are asked to select a box (after the boxes have been shuffled) and to pick a ball at random from that box. If the ball is red you win a prize. How should you distribute the balls in the boxes to maximize your chances of winning? Justify your reasoning. Choose the correct answer below. A. Put the red ball in one of the boxes and the three white balls in the other box. In this case the probability of the event of getting the red ball is \( \frac{1}{2} \cdot 1+\frac{1}{2} \cdot 0 \), or \( \frac{1}{2} \). B. Put the red ball and one white ball in one of the boxes and the other two white balls in the other box. In this case the probability of the event of getting the red ball is \( \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot 0 \), or \( \frac{1}{4} \). C. Put the red ball and two of the white balls in one of the boxes and the other white ball in the other box. In this case the probability of the event of getting the red ball is \( \frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \cdot 0 \), or \( \frac{1}{6} \).

Ask by Flynn Chan. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To maximize your chances of drawing the red ball, place the red ball in one box and all three white balls in the other box. This way, you have a 50% chance of selecting the box with the red ball and winning the prize.

Solución

The optimal strategy is to put only the red ball in one box and all three white balls in the other box—this is answer A. Here's why: After shuffling, you randomly choose one of the two boxes with equal probability (½ each). If you choose the box containing only the red ball, you are guaranteed to draw the red ball. If you choose the box with only white balls, you cannot draw the red ball. Therefore, the overall probability is   ½ × 1 (red ball if chosen) + ½ × 0 (white balls if chosen) = ½. Comparing with the other options: • Option B puts the red ball with one white ball in one box (giving a 50% chance within that box), but then the overall chance becomes ½ × ½ + ½ × 0 = ¼. • Option C puts the red ball with two white balls (1/3 chance within that box), resulting in ½ × 1/3 + ½ × 0 = 1/6. Thus, option A gives the highest probability of winning, 50%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To maximize your chances of winning the prize by selecting the red ball, the best strategy is option A. By putting the red ball in one box and all three white balls in the other, you have a straightforward calculation for the probability of getting the red ball. When you pick a box at random, you have a 50% chance of selecting the box with the red ball. If you do choose that box, you are guaranteed to pick the red ball, yielding an overall winning probability of \( \frac{1}{2} \). In options B and C, the probabilities of obtaining the red ball diminish significantly because the distribution adds extra uncertainty. For B, with only one white ball in the red ball's box, the chance drops to \( \frac{1}{4} \). For C, since the red ball shares a box with two white balls, the probability sinks to \( \frac{1}{6} \). So, stick with option A and go for that full \( \frac{1}{2} \) chance of winning!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad