Pregunta

The product of two consecutive integers is 110. Use factoring to find these integers.

Ask by Weaver Tran. in Nigeria
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The two consecutive integers are -11 and -10, or 10 and 11.

Solución

To find two consecutive integers whose product is 110, we can use algebraic methods involving factoring. Here's a step-by-step solution: ### Step 1: Define the Consecutive Integers Let’s denote the first integer as \( x \). Since the integers are consecutive, the next integer is \( x + 1 \). ### Step 2: Set Up the Equation The product of the two consecutive integers is 110: \[ x \times (x + 1) = 110 \] \[ x(x + 1) = 110 \] ### Step 3: Expand and Rearrange the Equation Expand the left side of the equation: \[ x^2 + x = 110 \] Bring all terms to one side to form a quadratic equation: \[ x^2 + x - 110 = 0 \] ### Step 4: Factor the Quadratic Equation We need to factor the quadratic equation \( x^2 + x - 110 = 0 \). To do this, find two numbers that multiply to **-110** and add up to **1**. - **Factors of -110:** - (11, -10) → \( 11 \times (-10) = -110 \) and \( 11 + (-10) = 1 \) Using these factors, the equation can be factored as: \[ (x + 11)(x - 10) = 0 \] ### Step 5: Solve for \( x \) Set each factor equal to zero and solve for \( x \): \[ x + 11 = 0 \quad \Rightarrow \quad x = -11 \] \[ x - 10 = 0 \quad \Rightarrow \quad x = 10 \] ### Step 6: Determine the Consecutive Integers - **If \( x = -11 \):** - The consecutive integers are \(-11\) and \(-10\). - **Product:** \((-11) \times (-10) = 110\) - **If \( x = 10 \):** - The consecutive integers are \(10\) and \(11\). - **Product:** \(10 \times 11 = 110\) ### **Conclusion** There are two pairs of consecutive integers whose product is 110: - **\(-11\) and \(-10\)** - **\(10\) and \(11\)** Both pairs satisfy the condition \( x(x + 1) = 110 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem, let's denote the two consecutive integers as \( n \) and \( n + 1 \). The equation representing their product is: \[ n(n + 1) = 110 \] Expanding this gives: \[ n^2 + n - 110 = 0 \] Now, we need to factor the quadratic equation. We are looking for two numbers that multiply to -110 and add up to 1. The numbers 11 and -10 fit perfectly: \[ (n - 10)(n + 11) = 0 \] Setting each factor to zero gives: \( n - 10 = 0 \) or \( n + 11 = 0 \) From \( n - 10 = 0 \), we find \( n = 10 \). Thus, the consecutive integers are 10 and 11. The other solution, \( n + 11 = 0 \), gives a negative integer, \( n = -11 \), making the consecutive integers -11 and -10. So the two pairs of consecutive integers that meet the requirement are either (10, 11) or (-11, -10). --- Did you know that consecutive integers come in handy for solving various algebraic puzzles, especially ones involving sums and products? It’s like unlocking different combinations on a lock! In the case of our problem, they’re not just mere numbers – they show up in games and patterns we encounter daily! For anyone trying their hand at these problems, a common mistake is to forget that you can also have negative consecutive integers. Often, people jump straight into positive pairs! So remember, don't shy away from the negatives—they hold the key to all sorts of fun solutions!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad