Pregunta
upstudy study bank question image url

A town has a population of 7000 and grows at \( 4 \% \) every year. What will be the population after 13 years, to the nearest whole number?

Ask by Mcdonald Griffin. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 13 years, the population will be approximately 11,650.

Solución

To solve the problem, we start with the formula for exponential growth:   Future Population = Present Population × (1 + growth rate)^number of years Here, the present population is 7000, the growth rate is 4% per year (which is 0.04), and the time period is 13 years. Plugging in these values, we have:   Future Population = 7000 × (1.04)^13 Calculating (1.04)^13 gives approximately 1.664242. Now, multiplying:   7000 × 1.664242 ≈ 11649.69 Rounded to the nearest whole number, the population after 13 years will be approximately 11,650.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the population after 13 years, you can use the formula for compound growth: \[ P = P_0 (1 + r)^t \] where \( P_0 \) is the initial population, \( r \) is the growth rate (as a decimal), and \( t \) is the number of years. In this case, \( P_0 = 7000 \), \( r = 0.04 \), and \( t = 13 \). So, \[ P = 7000 (1 + 0.04)^{13} \] \[ P = 7000 (1.04)^{13} \] \[ P \approx 7000 \times 1.6010 \] \[ P \approx 11207 \] The population after 13 years will be approximately 11,207. Now you know how compounded growth can amplify numbers over time, making it vital for budgeting, investments, and planning for expansions. This simple math has powerful applications in various sectors! Remember, it's crucial to convert the percentage into a decimal when using the growth formula—a common mistake that can throw off your calculations. So, always double-check those conversions before plugging in your numbers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad