Pregunta
upstudy study bank question image url

1. In the first line, type the (implicit) function: \( x+y=3 \) 2. In the second line, type the (explicit) function \( (t)=-*)+5 \) 3. Celcutate (by hand) the intercepts for \( x+y=3 \). \[ \begin{array}{cc} x+0=3 & o+y=3 \\ x=3 & y=3 \end{array} \] The \( y \)-intercept(s) of \( x+y=3 \) is/are: \( (0,3) \) The \( x \)-intercept(s) of \( x+y=3 \) is/are: \( (3,0) \) Once you find the intercept(s) algebraically, confirm your intercepts using Desmos. 4. Calculate (by hand) the intercepts for \( f(x)=-x^{2}+5 \). The \( y \)-intercept(s) of \( f(x) \) is/are: The \( x \)-intercept(s) of \( f(x) \) is/are: Once you find the intercept(s) algebraically, confirm your intercepts using Desmos. 5. Calculate (by hand) the point(s) of intersection of the two graphs.

Ask by Pope Evans. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. **Implicit Function**: \( x + y = 3 \) 2. **Explicit Function**: \( f(x) = -x^2 + 5 \) 3. **Intercepts for \( x + y = 3 \)**: - **y-intercept**: (0, 3) - **x-intercept**: (3, 0) 4. **Intercepts for \( f(x) = -x^2 + 5 \)**: - **y-intercept**: (0, 5) - **x-intercepts**: (√5, 0) and (–√5, 0) 5. **Intersection Points of the Two Graphs**: - (2, 1) - (–1, 4) Use Desmos to confirm these intercepts and intersection points.

Solución

Below is a step‐by‐step solution for the problem. ────────────────────────────── Step 1. Write the Implicit Function Write the equation in its given form:   x + y = 3 ────────────────────────────── Step 2. Write the Explicit Function The explicit function is given by:   f(x) = –x² + 5 ────────────────────────────── Step 3. Find the Intercepts for x + y = 3 • To find the y‐intercept, set x = 0:   0 + y = 3 ⟹ y = 3   The y‐intercept is: (0, 3) • To find the x‐intercept, set y = 0:   x + 0 = 3 ⟹ x = 3   The x‐intercept is: (3, 0) Confirm these intercepts using Desmos by graphing the equation x + y = 3. ────────────────────────────── Step 4. Find the Intercepts for f(x) = –x² + 5 • To find the y‐intercept, substitute x = 0:   f(0) = –(0)² + 5 = 5   The y‐intercept is: (0, 5) • To find the x‐intercepts, set f(x) = 0 and solve:   –x² + 5 = 0 ⟹ x² = 5 ⟹ x = ±√5   The x‐intercepts are: (√5, 0) and (–√5, 0) Again, you can confirm these intercepts on Desmos by graphing f(x) = –x² + 5. ────────────────────────────── Step 5. Find the Point(s) of Intersection of the Two Graphs The two equations are:   (1) x + y = 3   (2) y = –x² + 5 Use substitution. From (1), express y in terms of x:   y = 3 – x Replace in (2):   3 – x = –x² + 5 Solve for x:   –x² + 5 = 3 – x   Bring all terms to one side:   –x² + 5 – 3 + x = 0   –x² + x + 2 = 0 Multiply the entire equation by –1 to simplify:   x² – x – 2 = 0 Factor the quadratic:   (x – 2)(x + 1) = 0 Thus, the solutions for x are:   x = 2  or  x = –1 Find the corresponding y-values using y = 3 – x: • For x = 2:   y = 3 – 2 = 1   Intersection point: (2, 1) • For x = –1:   y = 3 – (–1) = 4   Intersection point: (–1, 4) Confirm these intersection points on Desmos by graphing both equations. ────────────────────────────── Summary of Answers 1. Implicit function:   x + y = 3 2. Explicit function:   f(x) = –x² + 5 3. Intercepts for x + y = 3:   y‐intercept: (0, 3)   x‐intercept: (3, 0) 4. Intercepts for f(x) = –x² + 5:   y‐intercept: (0, 5)   x‐intercepts: (√5, 0) and (–√5, 0) 5. Intersection points of the two graphs:   (2, 1) and (–1, 4) Use Desmos to verify these results by graphing the equations. Feel free to ask if you have any questions or need further explanation!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the intercepts for \( f(x)=-x^2+5 \), start with the \( y \)-intercept by evaluating \( f(0) \): \[ f(0) = -0^2 + 5 = 5. \] So the \( y \)-intercept is \( (0, 5) \). For \( x \)-intercepts, set \( f(x) = 0 \): \[ -x^2 + 5 = 0 \implies x^2 = 5 \implies x = \pm \sqrt{5}. \] Thus the \( x \)-intercepts are \( (\sqrt{5}, 0) \) and \( (-\sqrt{5}, 0) \). To find the intersection points of the two graphs, substitute \( y = 3 - x \) into \( f(x) = 3 - x \): \[ -x^2 + 5 = 3 - x \implies -x^2 + x + 2 = 0. \] Factoring gives \( (x-2)(x+1)=0 \), yielding \( x = 2 \) and \( x = -1 \). Substituting these \( x \)-values back to get \( y \)-coordinates: - For \( x = 2 \): \( y = 3 - 2 = 1 \) so \( (2, 1) \). - For \( x = -1 \): \( y = 3 - (-1) = 4 \) so \( (-1, 4) \). The points of intersection are \( (2, 1) \) and \( (-1, 4) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad