Pregunta
upstudy study bank question image url

Question 7 Draw neat graphs of the functions on the same set of axes. Clearly indicate intercepts w the axes. \( f(x)=-x^{2}-2 x+3 \) \( g(x)=-2 \cdot 2^{x-1}+1 \)

Ask by Moran Medina. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the functions \( f(x) = -x^{2} - 2x + 3 \) and \( g(x) = -2 \cdot 2^{x-1} + 1 \) on the same set of axes, follow these steps: 1. **Graph \( f(x) = -x^{2} - 2x + 3 \):** - **Vertex:** At \( x = -1 \), \( f(-1) = 4 \). So, the vertex is at \( (-1, 4) \). - **x-intercepts:** Solve \( -x^{2} - 2x + 3 = 0 \) to find \( x = -3 \) and \( x = 1 \). - **y-intercept:** At \( x = 0 \), \( f(0) = 3 \). So, the y-intercept is at \( (0, 3) \). - **Shape:** Draw a downward-opening parabola passing through these points. 2. **Graph \( g(x) = -2 \cdot 2^{x-1} + 1 \):** - **Asymptote:** As \( x \) approaches negative infinity, \( g(x) \) approaches 1. - **Intercept:** At \( x = 0 \), \( g(0) = 0 \). So, the only intercept is at \( (0, 0) \). - **Additional Point:** At \( x = 2 \), \( g(2) = -3 \). Plot the point \( (2, -3) \). - **Shape:** Sketch an exponential curve that reflects vertically, shifts right by 1 unit, and up by 1 unit, approaching the asymptote \( y = 1 \) from below as \( x \) increases. 3. **Plotting on the Same Axes:** - Draw the coordinate axes. - Plot all intercepts and key points for both functions. - Draw the asymptote for \( g(x) \) as a dashed line. - Sketch both curves ensuring they reflect the described features. **Final Graph:** Both functions should be clearly labeled with their intercepts and the asymptote for \( g(x) \) should be indicated.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To graph the functions \( f(x) = -x^2 - 2x + 3 \) and \( g(x) = -2 \cdot 2^{x-1} + 1 \), first identify the intercepts for both functions. For \( f(x) \), set \( y = 0 \) to find the x-intercepts. Solving the quadratic equation \( -x^2 - 2x + 3 = 0 \) gives intercepts at \( x = 1 \) and \( x = -3 \). The y-intercept occurs when \( x = 0 \), yielding \( f(0) = 3 \). For \( g(x) \), find the x-intercept by setting \( y = 0 \), resulting in \( -2 \cdot 2^{x-1} + 1 = 0 \) or \( x = 2 \). The y-intercept is found at \( g(0) = -2 \cdot 2^{-1} + 1 = 0 \). Now, graph both functions on the same set of axes, marking the intercepts clearly for better analysis and comparison! With these graphs, you can visually analyze their behavior: \( f(x) \) is a downward-opening parabola, while \( g(x) \) is an exponential function that approaches the horizontal line at \( y = 1 \) as \( x \) increases. Enjoy drawing!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad