Question 7 Draw neat graphs of the functions on the same set of axes. Clearly indicate intercepts w the axes. \( f(x)=-x^{2}-2 x+3 \) \( g(x)=-2 \cdot 2^{x-1}+1 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To graph the functions \( f(x) = -x^2 - 2x + 3 \) and \( g(x) = -2 \cdot 2^{x-1} + 1 \), first identify the intercepts for both functions. For \( f(x) \), set \( y = 0 \) to find the x-intercepts. Solving the quadratic equation \( -x^2 - 2x + 3 = 0 \) gives intercepts at \( x = 1 \) and \( x = -3 \). The y-intercept occurs when \( x = 0 \), yielding \( f(0) = 3 \). For \( g(x) \), find the x-intercept by setting \( y = 0 \), resulting in \( -2 \cdot 2^{x-1} + 1 = 0 \) or \( x = 2 \). The y-intercept is found at \( g(0) = -2 \cdot 2^{-1} + 1 = 0 \). Now, graph both functions on the same set of axes, marking the intercepts clearly for better analysis and comparison! With these graphs, you can visually analyze their behavior: \( f(x) \) is a downward-opening parabola, while \( g(x) \) is an exponential function that approaches the horizontal line at \( y = 1 \) as \( x \) increases. Enjoy drawing!
