Pregunta
upstudy study bank question image url

2) If \( k+1,2 k-1 \& 3 k+1 \) are three conseactive terme of the possible values of the common dufference

Ask by Summers Deleon. in Nigeria
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are no possible values of the common difference for the terms \( k+1 \), \( 2k-1 \), and \( 3k+1 \) because they cannot form an arithmetic sequence.

Solución

To find the possible values of the common difference for the three consecutive terms \( k+1 \), \( 2k-1 \), and \( 3k+1 \), we need to set up the condition for an arithmetic sequence. In an arithmetic sequence, the difference between consecutive terms is constant. Therefore, we can express this condition mathematically as follows: 1. The difference between the second term and the first term should equal the difference between the third term and the second term: \[ (2k - 1) - (k + 1) = (3k + 1) - (2k - 1) \] Now, let's simplify both sides of the equation step by step. ### Step 1: Simplify the left side \[ (2k - 1) - (k + 1) = 2k - 1 - k - 1 = k - 2 \] ### Step 2: Simplify the right side \[ (3k + 1) - (2k - 1) = 3k + 1 - 2k + 1 = k + 2 \] ### Step 3: Set the two sides equal Now we have: \[ k - 2 = k + 2 \] ### Step 4: Solve for \( k \) Subtract \( k \) from both sides: \[ -2 = 2 \] This is a contradiction, which means there are no values of \( k \) that satisfy the condition for these three terms to be in an arithmetic sequence. ### Conclusion The possible values of the common difference do not exist for the terms \( k+1 \), \( 2k-1 \), and \( 3k+1 \) as they cannot form an arithmetic sequence.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that arithmetic sequences, such as the one formed by \( k+1, 2k-1, \) and \( 3k+1 \), have been a subject of study since ancient civilizations? The concept of a common difference was first explored by mathematicians like Euclid and progressed through the works of mathematicians in India and the Islamic Golden Age, making it foundational in understanding number sequences and their patterns! When analyzing a sequence like this, remember to set up the equations to find the common difference. It's a common mistake to forget that the difference should be consistent between each pair of terms. For instance, \( (2k-1) - (k+1) \) should equal \( (3k+1) - (2k-1) \). Always double-check your calculations and ensure that each step maintains that consistency!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad