Pregunta
upstudy study bank question image url

Q3) a) Prove that the zero transformation \( T: V \rightarrow W \) is a linear transformation. b) Prove that the identity transformation \( T: V \rightarrow W \) is a linear transformation.

Ask by Maxwell Santiago. in Saudi Arabia
Nov 13,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The zero transformation is a linear transformation because it satisfies additivity and homogeneity. b) The identity transformation is a linear transformation because it also satisfies additivity and homogeneity.

Solución

a) To prove that the zero transformation \( T: V \rightarrow W \) is a linear transformation, we need to show that it satisfies the two properties of linearity: 1. Additivity: For all \( u, v \in V \), \( T(u + v) = T(u) + T(v) \). 2. Homogeneity: For all \( u \in V \) and all scalars \( c \), \( T(cu) = cT(u) \). Let's prove each property: 1. Additivity: Since \( T \) is the zero transformation, \( T(u) = 0 \) and \( T(v) = 0 \) for all \( u, v \in V \). Therefore, \( T(u + v) = 0 \) (because \( u + v \) is also in \( V \)). On the other hand, \( T(u) + T(v) = 0 + 0 = 0 \). Thus, \( T(u + v) = T(u) + T(v) \). 2. Homogeneity: For any scalar \( c \) and \( u \in V \), we have \( T(cu) = 0 \) (because \( cu \) is also in \( V \)). On the other hand, \( cT(u) = c \cdot 0 = 0 \). Thus, \( T(cu) = cT(u) \). Since \( T \) satisfies both additivity and homogeneity, it is a linear transformation. b) To prove that the identity transformation \( T: V \rightarrow W \) is a linear transformation, we also need to show that it satisfies the two properties of linearity: 1. Additivity: For all \( u, v \in V \), \( T(u + v) = T(u) + T(v) \). 2. Homogeneity: For all \( u \in V \) and all scalars \( c \), \( T(cu) = cT(u) \). Let's prove each property: 1. Additivity: Since \( T \) is the identity transformation, \( T(u) = u \) and \( T(v) = v \) for all \( u, v \in V \). Therefore, \( T(u + v) = u + v \) (because \( u + v \) is also in \( V \)). On the other hand, \( T(u) + T(v) = u + v \). Thus, \( T(u + v) = T(u) + T(v) \). 2. Homogeneity: For any scalar \( c \) and \( u \in V \), we have \( T(cu) = cu \) (because \( cu \) is also in \( V \)). On the other hand, \( cT(u) = c \cdot u = cu \). Thus, \( T(cu) = cT(u) \). Since \( T \) satisfies both additivity and homogeneity, it is a linear transformation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The zero transformation \( T: V \rightarrow W \) defined by \( T(v) = 0 \) for all \( v \in V \) is linear because it satisfies the two properties of linearity: for any vectors \( u, v \in V \) and scalar \( c \), we have \( T(u+v) = T(u) + T(v) = 0 + 0 = 0 \) and \( T(cv) = 0 = c \cdot 0 \). Both properties hold, proving that the zero transformation is indeed linear. The identity transformation \( T: V \rightarrow W \) given by \( T(v) = v \) for all \( v \in V \) is also linear. This is verified by checking that \( T(u+v) = u+v = T(u) + T(v) \) and \( T(cv) = cv = c \cdot T(v) \) for all vectors \( u, v \in V \) and scalars \( c \). Since both conditions for linearity are satisfied, the identity transformation is confirmed as linear as well.

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad