Pregunta
upstudy study bank question image url

The function \( f(x)=\frac{21}{x} \) is one-to-one. a. Find an equation for \( f^{-1}(x) \), the inverse function. b. Verify that your equation is correct by showing that \( f\left(f^{-1}(x)\right)=x \) and \( f^{-1}(f(x))=x \). A. \( f^{-1}(x)=\frac{21}{x} \), for \( x \neq 0 \) B. \( f^{-1}(x)=\square \), for \( x \geq \square \) C. \( f^{-1}(x)=\quad \), for all \( x \) D. \( f^{-1}(x)=\square \), for \( x \leq \square \) b. Verify that the equation is correct. \[ \begin{array}{rlrlrl} \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right) & =\mathrm{f}(\square) & \text { and } & \mathrm{f}^{-1}(\mathrm{f}(\mathrm{x})) & =\mathrm{f}^{-1}(\square) & \\ & =\square & & \text { Substitute. } \\ & =\square & & \text { Simplify } . \end{array} \]

Ask by Lynch Mathis. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inverse function is \( f^{-1}(x) = \frac{21}{x} \) for \( x \neq 0 \). To verify: - \( f(f^{-1}(x)) = x \) - \( f^{-1}(f(x)) = x \) These confirm that the inverse is correct.

Solución

To solve the problem, we will follow the steps outlined: ### Part a: Find the Inverse Function 1. **Start with the function**: \[ f(x) = \frac{21}{x} \] 2. **Replace \( f(x) \) with \( y \)**: \[ y = \frac{21}{x} \] 3. **Swap \( x \) and \( y \)** to find the inverse: \[ x = \frac{21}{y} \] 4. **Solve for \( y \)**: - Multiply both sides by \( y \): \[ xy = 21 \] - Divide both sides by \( x \): \[ y = \frac{21}{x} \] 5. **Thus, the inverse function is**: \[ f^{-1}(x) = \frac{21}{x} \] ### Part b: Verify the Inverse Function We need to verify that: 1. \( f(f^{-1}(x)) = x \) 2. \( f^{-1}(f(x)) = x \) #### Verification of \( f(f^{-1}(x)) \) 1. **Substitute \( f^{-1}(x) \) into \( f(x) \)**: \[ f(f^{-1}(x)) = f\left(\frac{21}{x}\right) \] 2. **Calculate \( f\left(\frac{21}{x}\right) \)**: \[ f\left(\frac{21}{x}\right) = \frac{21}{\frac{21}{x}} = \frac{21 \cdot x}{21} = x \] #### Verification of \( f^{-1}(f(x)) \) 1. **Substitute \( f(x) \) into \( f^{-1}(x) \)**: \[ f^{-1}(f(x)) = f^{-1}\left(\frac{21}{x}\right) \] 2. **Calculate \( f^{-1}\left(\frac{21}{x}\right) \)**: \[ f^{-1}\left(\frac{21}{x}\right) = \frac{21}{\frac{21}{x}} = \frac{21 \cdot x}{21} = x \] ### Conclusion Both verifications confirm that the inverse function is correct. Therefore, the answers are: - **A**: \( f^{-1}(x) = \frac{21}{x} \), for \( x \neq 0 \) - **B**: \( f^{-1}(x) = \frac{21}{x} \), for \( x \geq 0 \) - **C**: \( f^{-1}(x) = \frac{21}{x} \), for all \( x \) - **D**: \( f^{-1}(x) = \frac{21}{x} \), for \( x \leq 0 \) And the verification results are: \[ \begin{array}{rlrlrl} f(f^{-1}(x)) & = f\left(\frac{21}{x}\right) & \text{ and } & f^{-1}(f(x)) & = f^{-1}\left(\frac{21}{x}\right) & \\ & = x & & \text{ Substitute. } \\ & = x & & \text{ Simplify. } \end{array} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the inverse function \( f^{-1}(x) \), we start with \( f(x) = \frac{21}{x} \). To find the inverse, we set \( y = f(x) \) which gives us \( y = \frac{21}{x} \). Now, we solve for \( x \) in terms of \( y \): 1. Multiply both sides by \( x \): \( yx = 21 \) 2. Solve for \( x \): \( x = \frac{21}{y} \) Thus, the inverse function is \( f^{-1}(x) = \frac{21}{x} \). Now we can verify that this equation is correct by showing both compositions return the original values. For \( f(f^{-1}(x)) \): \[ f(f^{-1}(x)) = f\left(\frac{21}{x}\right) = \frac{21}{\left(\frac{21}{x}\right)} = x. \] For \( f^{-1}(f(x)) \): \[ f^{-1}(f(x)) = f^{-1}\left(\frac{21}{x}\right) = \frac{21}{\left(\frac{21}{x}\right)} = x. \] Both checks confirm that the inverse function is correct, so: \( f^{-1}(x) = \frac{21}{x} \) for \( x \neq 0 \). Now, let's dive into some engaging details! The concept of inverse functions has been around for centuries, and mathematicians like René Descartes and Gottfried Wilhelm Leibniz explored relationships between functions and their inverses, making this not just a mathematical exercise but a historical journey through the ages of mathematical evolution. A real-world application of inverse functions can be found in economics, particularly in the realm of supply and demand analysis. For example, if a company has a demand function related to price, knowing the inverse can help determine what price should be set to achieve a desired quantity sold. It’s like having a secret recipe to predict how much customers are willing to pay based on what they want!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad