Pregunta
upstudy study bank question image url

In Exercises \( 29-36 \), state the next elementary row operation that should be performed in order to put the matrix into diagonal form. Do not perform the operation. 29. \( \left[\begin{array}{rr|r}1 & -5 & 1 \\ -2 & 4 & 6\end{array}\right] \)

Ask by Grant Delgado. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To eliminate the -2 in the second row, add 2 times the first row to the second row.

Solución

To put the matrix \[ \left[\begin{array}{rr|r}1 & -5 & 1 \\ -2 & 4 & 6\end{array}\right] \] into diagonal form, we need to eliminate the entry below the leading 1 in the first column. The current leading entry is in the first row and first column (which is 1). The entry below it in the second row and first column is -2. To eliminate this -2, we can perform the following elementary row operation: **Add 2 times the first row to the second row.** This operation will change the second row to eliminate the -2, moving us closer to diagonal form.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To begin placing the matrix into diagonal form, you'll want to eliminate the leading coefficient in the second row. So, the next elementary row operation should be to add 2 times the first row to the second row. This will help create a zero beneath the leading 1 in the first column, setting you up for a diagonal approach. Following that, keep in mind that after this operation, it's crucial to make sure that any entries in rows below the pivot row (the first row in this case) are systematically eliminated, leading towards a neat diagonal arrangement. Just be cautious of keeping track of the coefficients as you make each operation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad