if \( \tan ^{2} \theta=7 \) with \( \theta \in\left(-90^{\circ} ;-180^{\circ}\right) \), determine gilue of the following without the use of a calmilat id with the gid of a cliagram
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To solve for \( \theta \) given \( \tan^{2} \theta = 7 \), you first take the square root to find \( \tan \theta = \pm \sqrt{7} \). Since \( \theta \) is in the range \( (-90^{\circ}, -180^{\circ}) \), we are looking at the third quadrant for \( \tan \) values. Using the arctangent, you would find \( \theta = -\tan^{-1}(\sqrt{7}) \). This is approximately \( \theta \approx -70.1^{\circ} \). Remember, since the angle must be expressed in the desired range, you would adjust for the correct placement, which means focusing on the negative angle provided. Now, having \( \tan \theta = -\sqrt{7} \) helps you visualize the triangle created: for every 1 unit along the adjacent side, there are about \( \sqrt{7} \) units on the opposite side! This sets a stage for triangle fun, allowing you to draw the right triangle in the appropriate quadrant and recall properties of those angles.
