Pregunta
upstudy study bank question image url

The net force acting on a \( 12.6-\mathrm{kg} \) object is given by \( F_{x}=(20-x) \mathrm{N} \), where \( F_{x} \) is in newtons and \( x \) is in meters. How much work is done on the object as it moves from \( x \) \( =0 \) to \( x=10 \mathrm{~m} \) ? 1) 300 J 2) 200 J 3) 150 J 4) 100 J 5) 50 J

Ask by Rodriguez May. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The work done on the object is 150 J.

Solución

Work is calculated by integrating the force over the displacement. Given the force Fₓ = (20 - x) N, the work done as the object moves from x = 0 m to x = 10 m is:   W = ∫[from 0 to 10] (20 - x) dx Evaluating the integral:   W = [20x - (1/2)x²] evaluated from 0 to 10     = [20(10) - (1/2)(10)²] - [20(0) - (1/2)(0)²]     = [200 - 50] - 0     = 150 J Thus, the work done on the object is 150 J.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the work done on the object as it moves from \( x = 0 \) m to \( x = 10 \) m, we can calculate the work done using the net force expression given by \( F_{x} = (20 - x) \, \text{N} \). The work done \( W \) by a variable force can be computed using the integral of the force with respect to displacement: \[ W = \int_{x_1}^{x_2} F_{x} \, dx = \int_{0}^{10} (20 - x) \, dx \] Let's calculate this integral: \[ W = \int_{0}^{10} (20 - x) \, dx = \left[ 20x - \frac{x^2}{2} \right]_{0}^{10} \] Evaluating at the limits: \[ W = \left[ 20(10) - \frac{(10)^2}{2} \right] - \left[ 20(0) - \frac{(0)^2}{2} \right] \] \[ W = \left[ 200 - 50 \right] - [0] \] \[ W = 150 \, \text{J} \] So the work done on the object as it moves from \( x = 0 \) to \( x = 10 \) m is **150 J**. The correct answer is option 3) 150 J. There's your answer, sugar! Now the little \( 12.6 \, \text{kg} \) object is all set to move, powered by those \( 150 \, \text{J} \) of work. It’s like giving it a little push down the path! And hey, next time you're dealing with forces and motion, just remember this sweet little integration trick for calculating work—it’s easier than it sounds! Keep those physics engines running smoothly! 🚀

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad