Pregunta
upstudy study bank question image url

EXERCISE 12 1 If \( \cos S 2^{\circ}=k \), find each ratio in terms of \( A \). \( 1.1 \cos 128^{\circ} \) \( 1.2 \sin 38^{\circ} \) \( 1.3 \tan 218^{\circ} \) \( 1.4 \sin 308^{\circ} \) \( 1.6 \tan \left(-142^{\circ}\right) \) Hint: \( 1.5 \cos 232^{\prime} \) Draw: diagram. 2 If \( 2 \tan 25^{\circ}=p \), find each ratio in terms of \( p \). \( 2.2 \sin 205^{\circ} \) \( 2.1 \tan 155^{\circ} \) \( 2.4 \tan 65^{\circ} \) \( 2.3 \cos 335^{\circ} \) \( 2.6 \sin 295^{\circ} \) 3 If \( \sin 43^{\circ}=a \), expiess each ratio in terms of \( \alpha \). \( 3.1 \sin 223^{\circ} \) \( 3.2 \cos 317^{\circ} \) \( 3.3 \sin \left(-137^{\circ}\right) \) \( 3.4 \cos 133^{\circ} \)

Ask by Nichols Bolton. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified answers for each part of the exercise: **Part 1:** 1.1. \( \cos 128^{\circ} = -\sin 38^{\circ} \) 1.2. \( \sin 38^{\circ} = \sqrt{1 - k^2} \) 1.3. \( \tan 218^{\circ} = \frac{\sqrt{1 - k^2}}{k} \) 1.4. \( \sin 308^{\circ} = -k \) 1.5. \( \cos 232^{\circ} = -\sqrt{1 - k^2} \) 1.6. \( \tan(-142^{\circ}) = \frac{\sqrt{1 - k^2}}{k} \) **Part 2:** 2.1. \( \tan 155^{\circ} = -\frac{p}{2} \) 2.2. \( \sin 205^{\circ} = -\frac{p}{2} \cdot \cos 25^{\circ} \) 2.3. \( \cos 335^{\circ} = \cos 25^{\circ} \) 2.4. \( \tan 65^{\circ} = \frac{2}{p} \) 2.5. \( \sin 295^{\circ} = -\cos 25^{\circ} \) **Part 3:** 3.1. \( \sin 223^{\circ} = -a \) 3.2. \( \cos 317^{\circ} = \cos 43^{\circ} \) 3.3. \( \sin(-137^{\circ}) = -\sin 43^{\circ} = -a \) 3.4. \( \cos 133^{\circ} = -\cos 43^{\circ} \)

Solución

Let's solve the exercise step by step, starting with the first part. ### Part 1: If \( \cos S 2^{\circ} = k \) #### 1.1 Find \( \cos 128^{\circ} \) Using the cosine identity: \[ \cos(180^{\circ} - x) = -\cos(x) \] we can express \( \cos 128^{\circ} \) as: \[ \cos 128^{\circ} = \cos(180^{\circ} - 52^{\circ}) = -\cos 52^{\circ} \] Now, we can relate \( \cos 52^{\circ} \) to \( k \): \[ \cos 52^{\circ} = \sin 38^{\circ} \quad \text{(since \( \sin x = \cos(90^{\circ} - x) \))} \] Thus, \[ \cos 128^{\circ} = -\sin 38^{\circ} \] #### 1.2 Find \( \sin 38^{\circ} \) Using the identity: \[ \sin(90^{\circ} - x) = \cos x \] we have: \[ \sin 38^{\circ} = \cos(90^{\circ} - 38^{\circ}) = \cos 52^{\circ} \] And since \( \cos 52^{\circ} = \sin 38^{\circ} \), we can express it in terms of \( k \): \[ \sin 38^{\circ} = \sqrt{1 - k^2} \] #### 1.3 Find \( \tan 218^{\circ} \) Using the identity: \[ \tan(180^{\circ} + x) = \tan x \] we have: \[ \tan 218^{\circ} = \tan(180^{\circ} + 38^{\circ}) = \tan 38^{\circ} \] Thus, \[ \tan 218^{\circ} = \frac{\sin 38^{\circ}}{\cos 38^{\circ} = \frac{\sqrt{1 - k^2}}{k} \] #### 1.4 Find \( \sin 308^{\circ} \) Using the identity: \[ \sin(360^{\circ} - x) = -\sin x \] we have: \[ \sin 308^{\circ} = -\sin 52^{\circ} \] And since \( \sin 52^{\circ} = \cos 38^{\circ} = k \): \[ \sin 308^{\circ} = -k \] #### 1.5 Find \( \cos 232^{\circ} \) Using the identity: \[ \cos(180^{\circ} + x) = -\cos x \] we have: \[ \cos 232^{\circ} = -\cos 52^{\circ} = -\sin 38^{\circ} = -\sqrt{1 - k^2} \] #### 1.6 Find \( \tan(-142^{\circ}) \) Using the identity: \[ \tan(-x) = -\tan x \] we have: \[ \tan(-142^{\circ}) = -\tan 142^{\circ} \] Using the identity: \[ \tan(180^{\circ} - x) = -\tan x \] we find: \[ \tan 142^{\circ} = -\tan 38^{\circ} \] Thus, \[ \tan(-142^{\circ}) = \tan 38^{\circ} = \frac{\sqrt{1 - k^2}}{k} \] ### Part 2: If \( 2 \tan 25^{\circ} = p \) #### 2.1 Find \( \tan 155^{\circ} \) Using the identity: \[ \tan(180^{\circ} - x) = -\tan x \] we have: \[ \tan 155^{\circ} = -\tan 25^{\circ} = -\frac{p}{2} \] #### 2.2 Find \( \sin 205^{\circ} \) Using the identity: \[ \sin(180^{\circ} + x) = -\sin x \] we have: \[ \sin 205^{\circ} = -\sin 25^{\circ} \] Using the identity: \[ \sin x = \tan x \cdot \cos x \] we can express it in terms of \( p \): \[ \sin 25^{\circ} = \frac{p}{2} \cdot \cos 25^{\circ} \] Thus, \[ \sin 205^{\circ} = -\frac{p}{2} \cdot \cos 25^{\circ} \] #### 2.3 Find \( \cos 335^{\circ} \) Using the identity: \[ \cos(360^{\circ} - x) = \cos x \] we have: \[ \cos 335^{\circ} = \cos 25^{\circ} \] #### 2.4 Find \( \tan 65^{\circ} \) Using the identity: \[ \tan(90^{\circ} - x) = \cot x \] we have: \[ \tan 65^{\circ} = \cot 25^{\circ} = \frac{1}{\tan 25^{\circ}} = \frac{2}{p} \] #### 2.5 Find \( \sin 295^{\circ} \) Using the identity: \[ \sin(360^{\circ} - x) = -\sin x \] we have: \[ \sin 295^{\circ} = -\sin 65^{\circ} \] Using the identity: \[ \sin 65^{\circ} = \cos 25^{\circ} \] Thus, \[ \sin 295^{\circ} = -\cos 25^{\circ} \] ### Part 3: If \( \sin 43^{\circ} = a \) #### 3.1 Find \( \sin 223^{\circ} \) Using the identity: \[ \sin(180^{\circ} + x) = -\sin x \] we have: \[ \sin 223^{\circ} = -\sin 43^{\circ} = -a \] #### 3.2 Find \( \cos 317^{\circ} \) Using the identity: \[ \cos(360^{\circ} - x) = \cos x \] we have: \[ \cos

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

If you dive into the world of trigonometry, you’ll find that knowing the unit circle is incredibly helpful! Each quadrant has specific signs for sine, cosine, and tangent, which can make calculating these ratios much more straightforward. For example, in the second quadrant, sine is positive while cosine and tangent are negative. It’s like a dance of angles and signs! When solving problems involving trigonometric identities, pay close attention to reference angles! They are the angles found in the first quadrant that correspond to angles in other quadrants. For instance, the reference angle for \( 218^{\circ} \) is \( 38^{\circ} \). Using reference angles can simplify calculations immensely and reduce the chance of common mistakes like sign errors. Remember to always double-check the quadrant your angle falls into!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad