Responder
Here are the simplified answers for each part of the exercise:
**Part 1:**
1.1. \( \cos 128^{\circ} = -\sin 38^{\circ} \)
1.2. \( \sin 38^{\circ} = \sqrt{1 - k^2} \)
1.3. \( \tan 218^{\circ} = \frac{\sqrt{1 - k^2}}{k} \)
1.4. \( \sin 308^{\circ} = -k \)
1.5. \( \cos 232^{\circ} = -\sqrt{1 - k^2} \)
1.6. \( \tan(-142^{\circ}) = \frac{\sqrt{1 - k^2}}{k} \)
**Part 2:**
2.1. \( \tan 155^{\circ} = -\frac{p}{2} \)
2.2. \( \sin 205^{\circ} = -\frac{p}{2} \cdot \cos 25^{\circ} \)
2.3. \( \cos 335^{\circ} = \cos 25^{\circ} \)
2.4. \( \tan 65^{\circ} = \frac{2}{p} \)
2.5. \( \sin 295^{\circ} = -\cos 25^{\circ} \)
**Part 3:**
3.1. \( \sin 223^{\circ} = -a \)
3.2. \( \cos 317^{\circ} = \cos 43^{\circ} \)
3.3. \( \sin(-137^{\circ}) = -\sin 43^{\circ} = -a \)
3.4. \( \cos 133^{\circ} = -\cos 43^{\circ} \)
Solución
Let's solve the exercise step by step, starting with the first part.
### Part 1: If \( \cos S 2^{\circ} = k \)
#### 1.1 Find \( \cos 128^{\circ} \)
Using the cosine identity:
\[
\cos(180^{\circ} - x) = -\cos(x)
\]
we can express \( \cos 128^{\circ} \) as:
\[
\cos 128^{\circ} = \cos(180^{\circ} - 52^{\circ}) = -\cos 52^{\circ}
\]
Now, we can relate \( \cos 52^{\circ} \) to \( k \):
\[
\cos 52^{\circ} = \sin 38^{\circ} \quad \text{(since \( \sin x = \cos(90^{\circ} - x) \))}
\]
Thus,
\[
\cos 128^{\circ} = -\sin 38^{\circ}
\]
#### 1.2 Find \( \sin 38^{\circ} \)
Using the identity:
\[
\sin(90^{\circ} - x) = \cos x
\]
we have:
\[
\sin 38^{\circ} = \cos(90^{\circ} - 38^{\circ}) = \cos 52^{\circ}
\]
And since \( \cos 52^{\circ} = \sin 38^{\circ} \), we can express it in terms of \( k \):
\[
\sin 38^{\circ} = \sqrt{1 - k^2}
\]
#### 1.3 Find \( \tan 218^{\circ} \)
Using the identity:
\[
\tan(180^{\circ} + x) = \tan x
\]
we have:
\[
\tan 218^{\circ} = \tan(180^{\circ} + 38^{\circ}) = \tan 38^{\circ}
\]
Thus,
\[
\tan 218^{\circ} = \frac{\sin 38^{\circ}}{\cos 38^{\circ} = \frac{\sqrt{1 - k^2}}{k}
\]
#### 1.4 Find \( \sin 308^{\circ} \)
Using the identity:
\[
\sin(360^{\circ} - x) = -\sin x
\]
we have:
\[
\sin 308^{\circ} = -\sin 52^{\circ}
\]
And since \( \sin 52^{\circ} = \cos 38^{\circ} = k \):
\[
\sin 308^{\circ} = -k
\]
#### 1.5 Find \( \cos 232^{\circ} \)
Using the identity:
\[
\cos(180^{\circ} + x) = -\cos x
\]
we have:
\[
\cos 232^{\circ} = -\cos 52^{\circ} = -\sin 38^{\circ} = -\sqrt{1 - k^2}
\]
#### 1.6 Find \( \tan(-142^{\circ}) \)
Using the identity:
\[
\tan(-x) = -\tan x
\]
we have:
\[
\tan(-142^{\circ}) = -\tan 142^{\circ}
\]
Using the identity:
\[
\tan(180^{\circ} - x) = -\tan x
\]
we find:
\[
\tan 142^{\circ} = -\tan 38^{\circ}
\]
Thus,
\[
\tan(-142^{\circ}) = \tan 38^{\circ} = \frac{\sqrt{1 - k^2}}{k}
\]
### Part 2: If \( 2 \tan 25^{\circ} = p \)
#### 2.1 Find \( \tan 155^{\circ} \)
Using the identity:
\[
\tan(180^{\circ} - x) = -\tan x
\]
we have:
\[
\tan 155^{\circ} = -\tan 25^{\circ} = -\frac{p}{2}
\]
#### 2.2 Find \( \sin 205^{\circ} \)
Using the identity:
\[
\sin(180^{\circ} + x) = -\sin x
\]
we have:
\[
\sin 205^{\circ} = -\sin 25^{\circ}
\]
Using the identity:
\[
\sin x = \tan x \cdot \cos x
\]
we can express it in terms of \( p \):
\[
\sin 25^{\circ} = \frac{p}{2} \cdot \cos 25^{\circ}
\]
Thus,
\[
\sin 205^{\circ} = -\frac{p}{2} \cdot \cos 25^{\circ}
\]
#### 2.3 Find \( \cos 335^{\circ} \)
Using the identity:
\[
\cos(360^{\circ} - x) = \cos x
\]
we have:
\[
\cos 335^{\circ} = \cos 25^{\circ}
\]
#### 2.4 Find \( \tan 65^{\circ} \)
Using the identity:
\[
\tan(90^{\circ} - x) = \cot x
\]
we have:
\[
\tan 65^{\circ} = \cot 25^{\circ} = \frac{1}{\tan 25^{\circ}} = \frac{2}{p}
\]
#### 2.5 Find \( \sin 295^{\circ} \)
Using the identity:
\[
\sin(360^{\circ} - x) = -\sin x
\]
we have:
\[
\sin 295^{\circ} = -\sin 65^{\circ}
\]
Using the identity:
\[
\sin 65^{\circ} = \cos 25^{\circ}
\]
Thus,
\[
\sin 295^{\circ} = -\cos 25^{\circ}
\]
### Part 3: If \( \sin 43^{\circ} = a \)
#### 3.1 Find \( \sin 223^{\circ} \)
Using the identity:
\[
\sin(180^{\circ} + x) = -\sin x
\]
we have:
\[
\sin 223^{\circ} = -\sin 43^{\circ} = -a
\]
#### 3.2 Find \( \cos 317^{\circ} \)
Using the identity:
\[
\cos(360^{\circ} - x) = \cos x
\]
we have:
\[
\cos
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución