Pregunta
simpify \( 2^{y} \cdot 3^{0} \cdot 2^{3 y} \)
Ask by Morrison Cervantes. in South Africa
Feb 19,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\(2^{4y}\)
Solución
Calculate or simplify the expression \( 2^{y} \cdot 3^{0} \cdot 2^{3y} \).
Simplify the expression by following steps:
- step0: Solution:
\(2^{y}\times 3^{0}\times 2^{3y}\)
- step1: Evaluate the power:
\(2^{y}\times 1\times 2^{3y}\)
- step2: Rewrite the expression:
\(2^{y}\times 2^{3y}\)
- step3: Multiply:
\(2^{y+3y}\)
- step4: Calculate:
\(2^{4y}\)
The simplified form of \(2^{y} \cdot 3^{0} \cdot 2^{3y}\) is \(2^{4y}\).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
Did you know that anything raised to the power of zero equals one? So, in this case, \( 3^0 = 1 \). This means we can ignore that part for simplification. Now, combining the powers of 2, we get \( 2^y \cdot 2^{3y} = 2^{y + 3y} = 2^{4y} \). So the simplified expression is \( 2^{4y} \). Keep those exponent rules in mind, and simplification becomes a breeze!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium