Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Let's simplify the expression \( \frac{4}{3x} - \frac{x+4}{x-2} \) step by step. First, we need a common denominator to combine these fractions. The denominators are \(3x\) and \(x-2\). The least common denominator (LCD) will be \(3x(x-2)\). Now, we will rewrite each fraction with the common denominator: 1. For the first term \( \frac{4}{3x} \): \[ \frac{4}{3x} = \frac{4(x-2)}{3x(x-2)} = \frac{4x - 8}{3x(x-2)} \] 2. For the second term \( \frac{x+4}{x-2} \): \[ \frac{x+4}{x-2} = \frac{(x+4)(3x)}{(x-2)(3x)} = \frac{3x^2 + 12x}{3x(x-2)} \] Now we can combine the two fractions: \[ \frac{4x - 8}{3x(x-2)} - \frac{3x^2 + 12x}{3x(x-2)} = \frac{(4x - 8) - (3x^2 + 12x)}{3x(x-2)} \] \[ = \frac{4x - 8 - 3x^2 - 12x}{3x(x-2)} = \frac{-3x^2 - 8x - 8}{3x(x-2)} \] Now we can factor the numerator if possible. Let's factor out \(-1\): \[ = \frac{-1(3x^2 + 8x + 8)}{3x(x-2)} \] Finally, since \(3x^2 + 8x + 8\) does not factor nicely (the discriminant is negative), we can leave the expression in this form or further simplify it if needed. Thus, the simplified expression is: \[ \frac{-3x^2 - 8x - 8}{3x(x-2)} \]
