Pregunta
upstudy study bank question image url

22. (i) Write down the first three terms in the expansion, in ascending powers of \( x \), of \( \left(2-\frac{x}{8}\right)^{n} \), where \( n \) is a positive integer greater than 2 . The first two terms in the expansion of \( (2+x)\left(2-\frac{x}{8}\right)^{n} \), in ascending powers of \( x \), are \( a+b x^{2} \), where \( a \) and \( b \) are constants.

Ask by Ward Simpson. in Singapore
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When \( n = 8 \), the first two terms in the expansion of \( (2+x)\left(2-\frac{x}{8}\right)^8 \) are \( 512 - 72x^2 \).

Solución

We begin by using the Binomial Theorem to expand \[ \left(2-\frac{x}{8}\right)^n, \] where \( n \) is a positive integer with \( n>2 \). The general term is given by \[ \binom{n}{k} \, (2)^{n-k}\left(-\frac{x}{8}\right)^k. \] For the first three terms (with \( k=0,1,2 \)) we have: 1. For \( k=0 \): \[ \binom{n}{0}\,(2)^n\left(-\frac{x}{8}\right)^0 = 2^n. \] 2. For \( k=1 \): \[ \binom{n}{1}\,(2)^{n-1}\left(-\frac{x}{8}\right) = -\frac{n\,2^{n-1}}{8}\,x. \] 3. For \( k=2 \): \[ \binom{n}{2}\,(2)^{n-2}\left(-\frac{x}{8}\right)^2 = \binom{n}{2}\,2^{n-2}\frac{x^2}{64}. \] (Note that the negative sign is squared so it becomes positive.) Thus, the first three terms in ascending powers of \( x \) are \[ 2^n \;-\; \frac{n\,2^{n-1}}{8}\,x \;+\; \binom{n}{2}\,\frac{2^{n-2}}{64}\,x^2. \] Next, we consider the expansion of \[ (2+x)\left(2-\frac{x}{8}\right)^n. \] Multiplying \((2+x)\) by the expansion of \(\left(2-\frac{x}{8}\right)^n\) (keeping only terms up to \(x^2\)) we get: \[ (2+x)\left(2^n - \frac{n\,2^{n-1}}{8}x + \binom{n}{2}\frac{2^{n-2}}{64}x^2\right). \] We now compute the product term‐by‐term. 1. The constant (or \( x^0 \)) term comes only from \[ 2\cdot2^n = 2^{n+1}. \] 2. The \( x^1 \) term receives contributions from: - \(2\) times the coefficient of \( x \) in the expansion: \[ 2\left(-\frac{n\,2^{n-1}}{8}\right) = -\frac{n\,2^n}{8}, \] - and \( x \) times the constant term: \[ 2^n. \] So the total coefficient of \( x \) is: \[ -\frac{n\,2^n}{8} + 2^n = 2^n\left(1 - \frac{n}{8}\right). \] 3. The \( x^2 \) term receives contributions from: - \(2\) times the coefficient of \( x^2 \) in the expansion: \[ 2 \cdot \binom{n}{2}\frac{2^{n-2}}{64} = \binom{n}{2}\frac{2^{n-1}}{64}, \] - and \( x \) times the coefficient of \( x \) in the expansion: \[ x \cdot \left(-\frac{n\,2^{n-1}}{8}x\right) = -\frac{n\,2^{n-1}}{8}\,x^2. \] Thus the total coefficient of \( x^2 \) is: \[ \binom{n}{2}\frac{2^{n-1}}{64} - \frac{n\,2^{n-1}}{8}. \] We are told that the first two terms of the expansion of \((2+x)(2-\frac{x}{8})^n\) are of the form \[ a + bx^2, \] which means that the coefficient of \( x \) must vanish. Hence, we set \[ 2^n\left(1 - \frac{n}{8}\right) = 0. \] Since \(2^n \neq 0\), it follows that \[ 1-\frac{n}{8} = 0 \quad\Longrightarrow\quad n = 8. \] Now, with \( n = 8 \) we find the constants \( a \) and \( b \). 1. The constant term is: \[ a = 2^{8+1} = 2^9 = 512. \] 2. To find \( b \) (the coefficient of \( x^2 \)): First, compute the coefficient of \( x^2 \) in the expansion of \(\left(2-\frac{x}{8}\right)^8\). For \( n=8 \), \[ \binom{8}{2} = \frac{8\cdot7}{2} = 28, \] and since the \( x^2 \) term is \[ 28\,\frac{2^{8-2}}{64}\,x^2 = 28\,\frac{2^6}{64}\,x^2 = 28\,\frac{64}{64}\,x^2 = 28x^2, \] we now compute the contributions to the \( x^2 \) term: - From \(2\) multiplied by the \(x^2\) term: \[ 2\cdot 28x^2 = 56x^2, \] - From \(x\) multiplied by the \(x\) term of the expansion of \(\left(2-\frac{x}{8}\right)^8\). The \( x \) term was: \[ -\frac{8\,2^{7}}{8}\,x = -2^{7}\,x = -128x, \] so multiplying by \( x \) gives \[ -128x^2. \] Adding these contributions gives: \[ b = 56 - 128 = -72. \] Thus, the answers are: For (i) the first three terms in the expansion of \[ \left(2-\frac{x}{8}\right)^n \] are \[ 2^n \;-\; \frac{n\,2^{n-1}}{8}\,x \;+\; \binom{n}{2}\frac{2^{n-2}}{64}\,x^2, \] and the first two terms of \[ (2+x)\left(2-\frac{x}{8}\right)^n \] (with cancellation of the \( x \) term) occur when \( n = 8 \) and are given by \[ 512 - 72x^2. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the first three terms in the expansion of \( \left(2-\frac{x}{8}\right)^{n} \) using the binomial theorem, we start with the expression. Recall the binomial expansion states: \[ (1 + u)^{n} = 1 + nu + \frac{n(n-1)}{2!}u^2 + \ldots \] For our expression, we set \( u = -\frac{x}{16} \) (since \( 2 = 16 \div 8 \)). Therefore, expanding gives us: \[ \left(2 - \frac{x}{8}\right)^{n} = 2^n\left(1 - \frac{x}{16}\right)^{n} = 2^n\left(1 - \frac{nx}{16} + \frac{n(n-1)}{2}\frac{x^2}{256}\right) + \ldots \] Thus, the first three terms are: \[ 2^n, \quad -\frac{n \cdot 2^{n-1}}{16}x, \quad \frac{n(n-1) \cdot 2^{n-2}}{512}x^2 \] For the second part, when we multiply \( (2+x) \) by the expansion of \( \left(2-\frac{x}{8}\right)^{n} \), we are concerned with the leading terms only: \[ (2+x)\left(2^n - \frac{n \cdot 2^{n-1}}{16}x + \ldots\right) \approx (2)(2^n) + (x)(2^n) + (2)(-\frac{n \cdot 2^{n-1}}{16}x) \] The first two terms up to \( x^2 \) give: \[ a = 2^{n+1}, \quad b = -\frac{2n \cdot 2^{n-1}}{16} = -\frac{n \cdot 2^n}{8} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad