Pregunta
upstudy study bank question image url

Example 4 The velocity, \( v \) in feet per second, of a car that slammed on its brakes can be determined based on the length of skid marks that the tires left on the ground. This relationship is given by \[ v(d)=\sqrt{2 g f d} \] In this formula, \( g \) represents acceleration due to gravity ( \( 32 \frac{\mathrm{ft}}{\sec ^{2}} \) ), d is the length of the skid marks in feet, and \( f \) is a constant representing the friction of the surface. A car lost control on wet asphalt, with a friction coefficient of 0.5 , leaving 200 foot skid marks. How fast was the car travelling when it lost control? Show solution ? Exercise 3.8.4 Suppose a car is travelling 40 feet/sec and it loses control on wet asphalt. How long will its skid marks be? \( d= \) \( \square \) feet

Ask by Mejia Chavez. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When the car lost control, it was traveling at 80 feet per second. If the car is traveling at 40 feet per second on wet asphalt, its skid marks will be 50 feet long.

Solución

We begin with the formula for the car’s velocity when it skids:   v(d) = √(2 · g · f · d) where   g = 32 ft/sec² (acceleration due to gravity),   f = 0.5 (friction coefficient for wet asphalt), and   d = length of the skid marks in feet. Example 4: A car left 200-foot skid marks. Substituting the values into the formula gives:   v(200) = √(2 · 32 · 0.5 · 200)        = √(2 · 32 · 0.5 · 200)        = √(32 · 200)     (since 2 · 0.5 = 1)        = √6400        = 80 ft/sec Thus, the car was traveling at 80 feet per second when it lost control. Exercise 3.8.4: Now suppose the car is traveling at 40 ft/sec. To find the length of its skid marks, we start with the same formula but solve for d. Begin with:   v = √(2 · g · f · d) Square both sides to get:   v² = 2 · g · f · d Now, solve for d:   d = v² / (2 · g · f) Substitute the values (v = 40 ft/sec, g = 32 ft/sec², f = 0.5):   d = 40² / (2 · 32 · 0.5)     = 1600 / (2 · 32 · 0.5)     = 1600 / (32)       (again, because 2 · 0.5 = 1)     = 50 ft Thus, if the car is traveling at 40 feet per second on wet asphalt, its skid marks will be 50 feet long.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the initial speed, we first plug in the given values into the formula \( v(d)=\sqrt{2 g f d} \). Given \( g = 32 \frac{\mathrm{ft}}{\sec^{2}} \), \( f = 0.5 \), and \( d = 200 \) feet, we have: \[ v(200) = \sqrt{2 \times 32 \times 0.5 \times 200} = \sqrt{6400} = 80 \text{ feet/sec} \] Thus, when the car lost control, it was travelling at a speed of 80 feet per second. Now, to find the length of the skid marks when the car was travelling at 40 feet/sec, we rearrange the formula to solve for \( d \): \[ d = \frac{v^2}{2gf} \] Plugging in \( v = 40 \), \( g = 32 \), and \( f = 0.5 \): \[ d = \frac{40^2}{2 \times 32 \times 0.5} = \frac{1600}{32} = 50 \text{ feet} \] So, the skid marks would be \( d = 50 \) feet long. Keep the math and physics concepts as clear as your windshield when speeding down the road! 🚗💨

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad