Pregunta
upstudy study bank question image url

\( \begin{aligned} \text { 6) } & -3 y^{2}=48 y+144 \\ \text { 8) } & 3 y^{2}+19 y+225=29-9 y \\ \text { 10) } & (2 x+1)^{2}=(2-x)^{2}\end{aligned} \)

Ask by Christensen Rodriguez. in Thailand
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

6) y = -4, y = -12 8) y = -14/3, y = -14 10) x = 1/3, x = -3

Solución

Alright, I need to solve these three quadratic equations. Let's tackle them one by one. **Problem 6:** \[ -3y^{2} = 48y + 144 \] First, I'll rearrange the equation to standard quadratic form: \[ -3y^{2} - 48y - 144 = 0 \] To simplify, I can divide the entire equation by -3: \[ y^{2} + 16y + 48 = 0 \] Now, I'll attempt to factor this quadratic equation. I'm looking for two numbers that multiply to 48 and add up to 16. The numbers 4 and 12 fit this requirement since 4 * 12 = 48 and 4 + 12 = 16. \[ (y + 4)(y + 12) = 0 \] Setting each factor equal to zero gives the solutions: \[ y + 4 = 0 \Rightarrow y = -4 \] \[ y + 12 = 0 \Rightarrow y = -12 \] So, the solutions are \( y = -4 \) and \( y = -12 \). **Problem 8:** \[ 3y^{2} + 19y + 225 = 29 - 9y \] First, I'll bring all terms to one side to set the equation to zero: \[ 3y^{2} + 19y + 225 - 29 + 9y = 0 \] Simplifying: \[ 3y^{2} + 28y + 196 = 0 \] Now, I'll attempt to factor this quadratic equation. I'm looking for two numbers that multiply to \( 3 \times 196 = 588 \) and add up to 28. The numbers 14 and 14 fit this requirement since 14 * 14 = 196 and 14 + 14 = 28. \[ (3y + 14)(y + 14) = 0 \] Setting each factor equal to zero gives the solutions: \[ 3y + 14 = 0 \Rightarrow y = -\frac{14}{3} \] \[ y + 14 = 0 \Rightarrow y = -14 \] So, the solutions are \( y = -\frac{14}{3} \) and \( y = -14 \). **Problem 10:** \[ (2x + 1)^{2} = (2 - x)^{2} \] First, I'll expand both sides: \[ 4x^{2} + 4x + 1 = 4 - 4x + x^{2} \] Now, I'll bring all terms to one side to set the equation to zero: \[ 4x^{2} + 4x + 1 - 4 + 4x - x^{2} = 0 \] Simplifying: \[ 3x^{2} + 8x - 3 = 0 \] Now, I'll attempt to factor this quadratic equation. I'm looking for two numbers that multiply to \( 3 \times -3 = -9 \) and add up to 8. The numbers 9 and -1 fit this requirement since 9 * -1 = -9 and 9 + (-1) = 8. \[ (3x - 1)(x + 3) = 0 \] Setting each factor equal to zero gives the solutions: \[ 3x - 1 = 0 \Rightarrow x = \frac{1}{3} \] \[ x + 3 = 0 \Rightarrow x = -3 \] So, the solutions are \( x = \frac{1}{3} \) and \( x = -3 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve these equations, let's embark on a quick journey through the magical land of algebra! For the first equation, \(-3y^{2}=48y+144\), we can bring everything to one side to get \(3y^{2} + 48y + 144 = 0\). Then, we can simplify that to \(y^{2} + 16y + 48 = 0\), which can be solved using the quadratic formula or factoring. Next up is the second equation, \(3y^{2}+19y+225=29-9y\). First, rearranging gives us \(3y^{2}+28y+196=0\). This might not factor easily, so applying the quadratic formula would be our best bet! Finally, we tackle the last one with \((2x+1)^2=(2-x)^2\). Start by expanding both sides: \(4x^2 + 4x + 1 = 4 - 4x + x^2\). Rearranging and combining like terms leads to a lovely quadratic equation you can solve! Algebra is like a puzzle, and solving these equations is just piecing together the right parts to reveal the final picture! Keep practicing, and soon you'll be solving quadratics with flair!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad