Pregunta
upstudy study bank question image url

Given that these simultaneous equations \( x-y=k \) \( x^{2}+y^{2}-9=0 \) have exactly one pair of solutions, show that \( k= \pm 3 \sqrt{2} \)

Ask by Hodges Smith. in China
Jan 05,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( k = \pm 3\sqrt{2} \)

Solución

To determine the values of \( k \) for which the system of equations \[ \begin{cases} x - y = k \\ x^2 + y^2 = 9 \end{cases} \] has exactly one pair of solutions, we can approach the problem both geometrically and algebraically. ### **Geometric Interpretation:** 1. **Equation of the Line:** \[ x - y = k \] This represents a straight line with slope \( 1 \). 2. **Equation of the Circle:** \[ x^2 + y^2 = 9 \] This is a circle centered at the origin \((0, 0)\) with radius \( 3 \). For the system to have exactly one solution, the line must be **tangent** to the circle. The condition for tangency is that the perpendicular distance from the center of the circle to the line equals the radius of the circle. 3. **Calculating the Distance:** The distance \( d \) from the center \((0, 0)\) to the line \( x - y = k \) is given by: \[ d = \frac{|0 - 0 - k|}{\sqrt{1^2 + (-1)^2}} = \frac{|k|}{\sqrt{2}} \] Setting this equal to the radius: \[ \frac{|k|}{\sqrt{2}} = 3 \implies |k| = 3\sqrt{2} \] Therefore, \( k = \pm 3\sqrt{2} \). ### **Algebraic Approach:** 1. **Express \( x \) in terms of \( y \):** \[ x = y + k \] 2. **Substitute into the Circle's Equation:** \[ (y + k)^2 + y^2 = 9 \] Expanding: \[ y^2 + 2ky + k^2 + y^2 = 9 \implies 2y^2 + 2ky + (k^2 - 9) = 0 \] 3. **Condition for One Solution:** For the quadratic equation in \( y \) to have exactly one solution, the discriminant must be zero: \[ D = (2k)^2 - 4 \cdot 2 \cdot (k^2 - 9) = 4k^2 - 8k^2 + 72 = -4k^2 + 72 = 0 \] Solving: \[ -4k^2 + 72 = 0 \implies 4k^2 = 72 \implies k^2 = 18 \implies k = \pm 3\sqrt{2} \] Both methods conclusively show that the system has exactly one pair of solutions only when \( k = \pm 3\sqrt{2} \). **Answer:** After simplifying, the only possible values are ± 3 times √2. Thus, k = ± 3 √2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the value of \( k \) such that the given simultaneous equations have exactly one pair of solutions, we can start solving them step by step. 1. The first equation is: \[ x - y = k \implies x = y + k \] 2. Substitute \( x \) in the second equation: \[ (y + k)^2 + y^2 - 9 = 0 \] Expanding this, we get: \[ y^2 + 2ky + k^2 + y^2 - 9 = 0 \implies 2y^2 + 2ky + (k^2 - 9) = 0 \] 3. This is a quadratic equation in \( y \). For the quadratic to have exactly one solution, the discriminant must be zero: \[ D = (2k)^2 - 4 \cdot 2 \cdot (k^2 - 9) = 0 \] Simplifying, we find: \[ 4k^2 - 8(k^2 - 9) = 0 \implies 4k^2 - 8k^2 + 72 = 0 \implies -4k^2 + 72 = 0 \implies 4k^2 = 72 \implies k^2 = 18 \implies k = \pm 3\sqrt{2} \] Thus, the values of \( k \) for which the original system of equations has exactly one solution are \( k = \pm 3\sqrt{2} \). Now, let's explore a bit more about this solution! The connection between quadratic equations and their discriminants often reveals interesting insights into the nature of their roots. When the discriminant is zero, we encounter the special situation of a "double root" or repeated solution. This provides a fantastic intersection of algebra and geometry! If you visualize this in the coordinate plane, the equations represent a circle and a line that just touches the circle at one point—a point of tangency! Want to delve deeper into this math magic? Consider exploring the world of conics, where similar principles apply beyond just circles and lines. You'll uncover how ellipses, hyperbolas, and parabolas behave, especially when it comes to interaction with linear equations. It’s like a delightful dance of shapes where the rules of Algebra and Geometry play together!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad