Pregunta
upstudy study bank question image url

9. Find the local maximums, local minimums, domain, and range for: \[ f(x)=0.5 x^{3}-3 x^{2}+1.5 \]

Ask by Deleon Daniels. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Local Maximum at (0, 1.5), Local Minimum at (4, -14.5), Domain: all real numbers, Range: all real numbers.

Solución

We are given the function   f(x) = 0.5x³ – 3x² + 1.5 Step 1. Find the first derivative f '(x):   f '(x) = d/dx [0.5x³ – 3x² + 1.5]        = 1.5x² – 6x Factor the derivative:   1.5x² – 6x = 1.5x(x – 4) Step 2. Set the derivative equal to zero to find critical points:   1.5x(x – 4) = 0 Thus, x = 0 or x = 4. Step 3. Determine whether these critical points are local minima or maxima using the second derivative test. Find the second derivative:   f ''(x) = d/dx [1.5x² – 6x] = 3x – 6 Evaluate f ''(x) at the critical points: — At x = 0:   f ''(0) = 3(0) – 6 = –6, which is less than 0. So f has a local maximum at x = 0.   Calculate f(0) = 0.5(0)³ – 3(0)² + 1.5 = 1.5.   Thus, the local maximum is at (0, 1.5). — At x = 4:   f ''(4) = 3(4) – 6 = 12 – 6 = 6, which is greater than 0. So f has a local minimum at x = 4.   Calculate f(4) = 0.5(4)³ – 3(4)² + 1.5           = 0.5(64) – 3(16) + 1.5           = 32 – 48 + 1.5           = –14.5.   Thus, the local minimum is at (4, –14.5). Step 4. Domain and Range Domain: Since f(x) is a polynomial, the domain is all real numbers: (–∞, ∞). Range: f(x) is a cubic function. Cubic functions with a nonzero x³ term always have a range of (–∞, ∞). Summary: • Local Maximum: (0, 1.5) • Local Minimum: (4, –14.5) • Domain: (–∞, ∞) • Range: (–∞, ∞)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the local maximums and minimums of the function \( f(x) = 0.5 x^3 - 3x^2 + 1.5 \), we first calculate the derivative, \( f'(x) = 1.5x^2 - 6x \). Setting this equal to zero gives us the critical points: \( x(1.5x - 6) = 0 \), leading to \( x = 0 \) and \( x = 4 \). We can use the second derivative test, \( f''(x) = 3x - 6 \). At \( x = 0 \), \( f''(0) = -6 < 0 \) (local maximum), and at \( x = 4 \), \( f''(4) = 6 > 0 \) (local minimum). The function is a cubic polynomial, which means its domain is all real numbers: \( (-\infty, \infty) \). To find the range, we evaluate \( f(x) \) at the critical points: \( f(0) = 1.5 \) and \( f(4) = -3 \). Since the end behavior of a cubic function goes to \( \pm \infty \), we have a local maximum at \( (0, 1.5) \) and a local minimum at \( (4, -3) \). However, watch out for the critical point analysis! It's easy to overlook other important behaviors, particularly at the "edges" of the graph. Always double-check your intervals of increase and decrease, as errors can lead you to misidentify local extrema. Practicing with various function types can also bolster your confidence in applying these principles.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad