Pregunta
upstudy study bank question image url

\( -3 x^{2}+(k-5) x=-k+2 \) Show that the roots are real and rational for all \( k \in \mathbb{Z} \). Answer: INsTRUCTION: Usually you would need to show all of your working out for a question like this. For the computer to mark your answer, just fill in the final line showing that the roots are real and rational. So the final line that shows that the

Ask by Carlson Sandoval. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The roots are real and rational for all integer values of \( k \).

Solución

To show that the roots of the equation \[ -3x^{2} + (k-5)x = -k + 2 \] are real and rational for all \( k \in \mathbb{Z} \), we can rearrange the equation into standard quadratic form: \[ -3x^{2} + (k-5)x + (k-2) = 0 \] This can be rewritten as: \[ 3x^{2} - (k-5)x - (k-2) = 0 \] Now, we will use the discriminant \( D \) of the quadratic equation \( ax^2 + bx + c = 0 \), which is given by: \[ D = b^2 - 4ac \] In our case, \( a = 3 \), \( b = -(k-5) \), and \( c = -(k-2) \). Thus, we can calculate the discriminant: \[ D = (-(k-5))^2 - 4 \cdot 3 \cdot (-(k-2)) \] Calculating \( D \): \[ D = (k-5)^2 + 12(k-2) \] Expanding this: \[ D = (k^2 - 10k + 25) + (12k - 24) \] \[ D = k^2 + 2k + 1 \] \[ D = (k + 1)^2 \] Since \( (k + 1)^2 \) is a perfect square, it is always non-negative for all \( k \in \mathbb{Z} \). Therefore, the roots are real. Next, to show that the roots are rational, we note that since \( D \) is a perfect square, the roots can be expressed as: \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{(k-5) \pm (k + 1)}{6} \] Calculating the two possible roots: 1. \( x_1 = \frac{(k-5) + (k + 1)}{6} = \frac{2k - 4}{6} = \frac{k - 2}{3} \) 2. \( x_2 = \frac{(k-5) - (k + 1)}{6} = \frac{-6}{6} = -1 \) Both roots \( x_1 \) and \( x_2 \) are rational for all integer values of \( k \). Thus, we conclude that the roots are real and rational for all \( k \in \mathbb{Z} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Discriminant \( D = b^2 - 4ac = (k-5)^2 - 4(-3)(-k+2) \). Simplifying, we find \( D = (k-5)^2 - 12k + 24 = k^2 - 10k + 1 \). The roots are real if \( D \geq 0 \). The discriminant \( k^2 - 10k + 1 \) can be expressed as \( (k-5)^2 - 24 \). This is always non-negative for integers \( k \) because \( (k-5)^2 \) is non-negative, ensuring that the roots are rational by virtue of their nature as integers. Hence, the roots are real and rational for all \( k \in \mathbb{Z} \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad