Find an equation for the line with the given properties. Express your answer using either the general form or the slope-intercept form of the equation of a line. Perpendicular to the line \( x-5 y=-6 \); containing the point \( (0,9) \) The equation of the line is (Simplify your answer.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the equation of a line perpendicular to the given line \(x - 5y = -6\), we first need to convert this equation to slope-intercept form. Rearranging gives us \(5y = x + 6\) or \(y = \frac{1}{5}x + \frac{6}{5}\). The slope of this line is \(\frac{1}{5}\). Therefore, the slope of the line we want, since it's perpendicular, will be the negative reciprocal: \(-5\). Now, we use the point-slope form of a line's equation, which is \(y - y_1 = m(x - x_1)\), where \((x_1, y_1)\) is the point (0, 9). Substituting in the values: \[ y - 9 = -5(x - 0) \] This simplifies to: \[ y - 9 = -5x \] \[ y = -5x + 9 \] So the equation of the line is \(y = -5x + 9\), which is in slope-intercept form. To express it in general form, we can rearrange it: \[ 5x + y = 9 \] Thus, the final equation of the line in general form is: \[ 5x + y = 9 \]