Pregunta
upstudy study bank question image url

Inspect the graph of the function to determine whet A square root function, \( n(x)=\sqrt{3 x} \), on \( (0, \infty) \) On the interval \( (0, \infty), n(x)=\sqrt{3 x} \) is concave neither co

Ask by Ray Greene. in the United States
Mar 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( n(x) = \sqrt{3x} \) is concave on the interval \( (0, \infty) \).

Solución

1. We are given the function \[ n(x)=\sqrt{3x} \] on the interval \((0, \infty)\). 2. To determine concavity, we compute the second derivative \(n''(x)\). 3. First, differentiate \(n(x)\): \[ n(x)=\sqrt{3x} = (3x)^{\frac{1}{2}}. \] Using the chain rule, \[ n'(x)=\frac{1}{2}(3x)^{-\frac{1}{2}}(3)=\frac{3}{2}(3x)^{-\frac{1}{2}}. \] Rewrite \((3x)^{-\frac{1}{2}}\) as: \[ n'(x)=\frac{3}{2\sqrt{3x}}=\frac{\sqrt{3}}{2\sqrt{x}}. \] 4. Next, differentiate \(n'(x)\) to find the second derivative: \[ n'(x)=\frac{\sqrt{3}}{2} x^{-\frac{1}{2}}. \] Differentiating with respect to \(x\), \[ n''(x)=\frac{\sqrt{3}}{2}\left(-\frac{1}{2}\right)x^{-\frac{3}{2}} = -\frac{\sqrt{3}}{4}x^{-\frac{3}{2}}. \] 5. Since \(x^{-\frac{3}{2}}>0\) for \(x>0\), we have \[ n''(x)=-\frac{\sqrt{3}}{4}x^{-\frac{3}{2}} < 0 \] for all \(x>0\). 6. Because the second derivative is negative on \((0, \infty)\), the function \(n(x)=\sqrt{3x}\) is concave (concave downward) on this interval.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The function \( n(x)=\sqrt{3 x} \) is defined for \( x > 0 \) and represents a classic square root function. Graphically, it starts at the origin and increases gradually, showing a gentle curve. To determine concavity, we can analyze the second derivative. The first derivative is \( n'(x)=\frac{3}{2\sqrt{3x}} \), which is positive in the interval. The second derivative, \( n''(x) \), reveals that as \( x \) increases, the rate of increase of the slope decreases, indicating the function is concave down for all \( x > 0 \). In real-world applications, square root functions often model phenomena involving growth at a decreasing rate. A prime example is the relationship between the area of a square and the length of its sides; as you increase the side length, the area rises, but the square root of the area used for construction constraints increases more slowly. This principle helps in various fields, including architecture and engineering, by informing design limits based on material constraints and safety regulations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad