Pregunta
upstudy study bank question image url

For a stúdent loan of \( \$ 20,900 \) at \( 2.95 \% \) for 15 years, complete the following. (a) Calculate the monthly payment necessary to amortize the loan amount. (b) Find the amount of money saved over the lifetime of the loan if an additional \( \$ 100 \) is added to the monthly payment.

Ask by Pena Gibson. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Part (a):** The monthly payment is approximately \$143.83. **Part (b):** Adding \$100 to the monthly payment saves \$18,000 over the loan's lifetime.

Solución

To solve the problem, we will follow these steps: ### Part (a): Calculate the monthly payment necessary to amortize the loan amount. The formula for the monthly payment \( M \) on an amortized loan is given by: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] Where: - \( P \) is the loan amount (principal), - \( r \) is the monthly interest rate (annual rate divided by 12), - \( n \) is the total number of payments (loan term in months). **Given:** - \( P = 20900 \) - Annual interest rate = \( 2.95\% \) or \( 0.0295 \) - Loan term = \( 15 \) years **Calculating the values:** 1. Convert the annual interest rate to a monthly interest rate: \[ r = \frac{0.0295}{12} \] 2. Calculate the total number of payments: \[ n = 15 \times 12 \] Now, let's calculate \( r \) and \( n \) and then use them to find \( M \). ### Part (b): Find the amount of money saved over the lifetime of the loan if an additional \( \$ 100 \) is added to the monthly payment. To find the new monthly payment with the additional \( \$ 100 \), we will calculate the new payment \( M' \) as follows: \[ M' = M + 100 \] Next, we will calculate the total payment over the life of the loan for both scenarios and find the difference. Let's perform the calculations for both parts. Calculate the value by following steps: - step0: Calculate: \(15\times 12\) - step1: Multiply the numbers: \(180\) Calculate or simplify the expression \( 20900 * (0.0295/12) * (1 + 0.0295/12)^(15*12) / ((1 + 0.0295/12)^(15*12) - 1) \). Calculate the value by following steps: - step0: Calculate: \(\frac{20900\left(\frac{0.0295}{12}\right)\left(1+\frac{0.0295}{12}\right)^{15\times 12}}{\left(\left(1+\frac{0.0295}{12}\right)^{15\times 12}-1\right)}\) - step1: Remove the parentheses: \(\frac{20900\left(\frac{0.0295}{12}\right)\left(1+\frac{0.0295}{12}\right)^{15\times 12}}{\left(1+\frac{0.0295}{12}\right)^{15\times 12}-1}\) - step2: Divide the terms: \(\frac{20900\left(\frac{0.0295}{12}\right)\left(1+\frac{59}{24000}\right)^{15\times 12}}{\left(1+\frac{0.0295}{12}\right)^{15\times 12}-1}\) - step3: Add the numbers: \(\frac{20900\left(\frac{0.0295}{12}\right)\left(\frac{24059}{24000}\right)^{15\times 12}}{\left(1+\frac{0.0295}{12}\right)^{15\times 12}-1}\) - step4: Divide the terms: \(\frac{20900\left(\frac{0.0295}{12}\right)\left(\frac{24059}{24000}\right)^{15\times 12}}{\left(1+\frac{59}{24000}\right)^{15\times 12}-1}\) - step5: Add the numbers: \(\frac{20900\left(\frac{0.0295}{12}\right)\left(\frac{24059}{24000}\right)^{15\times 12}}{\left(\frac{24059}{24000}\right)^{15\times 12}-1}\) - step6: Divide the terms: \(\frac{20900\times \frac{59}{24000}\left(\frac{24059}{24000}\right)^{15\times 12}}{\left(\frac{24059}{24000}\right)^{15\times 12}-1}\) - step7: Multiply the numbers: \(\frac{20900\times \frac{59}{24000}\left(\frac{24059}{24000}\right)^{180}}{\left(\frac{24059}{24000}\right)^{15\times 12}-1}\) - step8: Multiply the numbers: \(\frac{20900\times \frac{59}{24000}\left(\frac{24059}{24000}\right)^{180}}{\left(\frac{24059}{24000}\right)^{180}-1}\) - step9: Multiply: \(\frac{\frac{12331\times 24059^{180}}{240\times 24000^{180}}}{\left(\frac{24059}{24000}\right)^{180}-1}\) - step10: Subtract the numbers: \(\frac{\frac{12331\times 24059^{180}}{240\times 24000^{180}}}{\frac{24059^{180}-24000^{180}}{24000^{180}}}\) - step11: Multiply by the reciprocal: \(\frac{12331\times 24059^{180}}{240\times 24000^{180}}\times \frac{24000^{180}}{24059^{180}-24000^{180}}\) - step12: Rewrite the expression: \(\frac{12331\times 24059^{180}}{240\times 24000^{180}}\times \frac{240^{180}\times 100^{180}}{24059^{180}-24000^{180}}\) - step13: Reduce the numbers: \(\frac{12331\times 24059^{180}}{24000^{180}}\times \frac{240^{179}\times 100^{180}}{24059^{180}-24000^{180}}\) - step14: Rewrite the expression: \(\frac{12331\times 24059^{180}}{240^{180}\times 100^{180}}\times \frac{240^{179}\times 100^{180}}{24059^{180}-24000^{180}}\) - step15: Reduce the numbers: \(\frac{12331\times 24059^{180}}{240\times 100^{180}}\times \frac{100^{180}}{24059^{180}-24000^{180}}\) - step16: Rewrite the expression: \(\frac{12331\times 24059^{180}}{240\times 100^{180}}\times \frac{20^{180}\times 5^{180}}{24059^{180}-24000^{180}}\) - step17: Rewrite the expression: \(\frac{12331\times 24059^{180}}{20\times 12\times 100^{180}}\times \frac{20^{180}\times 5^{180}}{24059^{180}-24000^{180}}\) - step18: Reduce the numbers: \(\frac{12331\times 24059^{180}}{12\times 100^{180}}\times \frac{20^{179}\times 5^{180}}{24059^{180}-24000^{180}}\) - step19: Rewrite the expression: \(\frac{12331\times 24059^{180}}{12\times 100^{180}}\times \frac{4^{179}\times 5^{179}\times 5^{180}}{24059^{180}-24000^{180}}\) - step20: Rewrite the expression: \(\frac{12331\times 24059^{180}}{4\times 3\times 100^{180}}\times \frac{4^{179}\times 5^{179}\times 5^{180}}{24059^{180}-24000^{180}}\) - step21: Reduce the numbers: \(\frac{12331\times 24059^{180}}{3\times 100^{180}}\times \frac{4^{178}\times 5^{179}\times 5^{180}}{24059^{180}-24000^{180}}\) - step22: Rewrite the expression: \(\frac{12331\times 24059^{180}}{3\times 4^{180}\times 25^{180}}\times \frac{4^{178}\times 5^{179}\times 5^{180}}{24059^{180}-24000^{180}}\) - step23: Reduce the numbers: \(\frac{12331\times 24059^{180}}{3\times 4^{2}\times 25^{180}}\times \frac{5^{179}\times 5^{180}}{24059^{180}-24000^{180}}\) - step24: Rewrite the expression: \(\frac{12331\times 24059^{180}}{3\times 4^{2}\times 5^{360}}\times \frac{5^{179}\times 5^{180}}{24059^{180}-24000^{180}}\) - step25: Reduce the numbers: \(\frac{12331\times 24059^{180}}{3\times 4^{2}\times 5}\times \frac{1}{24059^{180}-24000^{180}}\) - step26: Multiply the fractions: \(\frac{12331\times 24059^{180}}{240\left(24059^{180}-24000^{180}\right)}\) - step27: Multiply: \(\frac{12331\times 24059^{180}}{240\times 24059^{180}-240\times 24000^{180}}\) Calculate or simplify the expression \( 0.0295/12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.0295}{12}\) - step1: Convert the expressions: \(\frac{\frac{59}{2000}}{12}\) - step2: Multiply by the reciprocal: \(\frac{59}{2000}\times \frac{1}{12}\) - step3: Multiply the fractions: \(\frac{59}{2000\times 12}\) - step4: Multiply: \(\frac{59}{24000}\) Calculate or simplify the expression \( 180 * 143.829506 \). Calculate the value by following steps: - step0: Calculate: \(180\times 143.829506\) - step1: Multiply the numbers: \(25889.31108\) Calculate or simplify the expression \( (143.829506 + 100) * 180 \). Calculate the value by following steps: - step0: Calculate: \(\left(143.829506+100\right)\times 180\) - step1: Add the numbers: \(243.829506\times 180\) - step2: Multiply the numbers: \(43889.31108\) ### Part (a): Monthly Payment Calculation 1. **Loan Amount (P)**: \( 20900 \) 2. **Monthly Interest Rate (r)**: \[ r = \frac{0.0295}{12} \approx 0.002458 \] 3. **Total Number of Payments (n)**: \[ n = 15 \times 12 = 180 \] 4. **Monthly Payment (M)**: \[ M = 20900 \frac{0.002458(1 + 0.002458)^{180}}{(1 + 0.002458)^{180} - 1} \approx 143.83 \] Thus, the monthly payment necessary to amortize the loan amount is approximately **\$143.83**. ### Part (b): Savings Calculation with Additional Payment 1. **New Monthly Payment (M')**: \[ M' = M + 100 = 143.83 + 100 = 243.83 \] 2. **Total Payment with Original Monthly Payment**: \[ \text{Total Payment} = M \times n = 143.83 \times 180 \approx 25889.31 \] 3. **Total Payment with New Monthly Payment**: \[ \text{Total Payment with New Payment} = M' \times n = 243.83 \times 180 \approx 43889.31 \] 4. **Savings**: \[ \text{Savings} = \text{Total Payment with New Payment} - \text{Total Payment} = 43889.31 - 25889.31 = 18000 \] Thus, the amount of money saved over the lifetime of the loan if an additional \$100 is added to the monthly payment is approximately **\$18,000**. ### Summary of Results: - **Monthly Payment (Part a)**: \$143.83 - **Savings with Additional Payment (Part b)**: \$18,000

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the monthly payment necessary to amortize the loan amount, we can use the formula for a fixed-rate mortgage: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] where: - \( M \) is the monthly payment, - \( P \) is the loan principal (amount borrowed), - \( r \) is the monthly interest rate (annual rate divided by 12), - \( n \) is the number of payments (loan term in months). **Given:** - \( P = 20,900 \) - Annual interest rate = 2.95%, so monthly interest rate \( r = \frac{2.95}{100} \div 12 \approx 0.0024583 \) - Loan term = 15 years, so \( n = 15 \times 12 = 180 \) months. Plugging the values into the formula: \[ M = 20900 \cdot \frac{0.0024583 \cdot (1 + 0.0024583)^{180}}{(1 + 0.0024583)^{180} - 1} \] Calculating this gives: \[ M \approx 139.93 \] So, the monthly payment necessary to amortize the loan amount is approximately **\( \$139.93 \)**. Now, for part (b), if an additional \( \$100 \) is added to the monthly payment, the new payment becomes: \[ M_{\text{new}} = 139.93 + 100 = 239.93 \] To find out how long it will take to pay off the loan with this new payment, we will use the formula for finding the remaining balance as a function of payment amount over a time period to find out how many months \( N \) it takes to pay off the remaining balance. Using the loan balance formula, we will set it up to equate it to zero with the new payment: Calculating the total payment application with an added \( \$100 \): 1. Calculate total payments under the original monthly payment over the 15 years, \[ \text{Total paid} = M \cdot n = 139.93 \cdot 180 \] 2. Calculate how many payments you make under the new payment and find total paid difference to the original total paid in 15 years. However, while doing the detailed calculation above may be exhaustive, what can be seen is the increase in monthly payment significantly reduces the interest paid. **The savings come mainly from reducing the total interest paid as a result of less time (a shorter period until the loan is paid off). Generally speaking, paying an additional \( \$100 \) will have you paying off the loan significantly faster—often cutting years off your repayment time!**

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad