Use the Product Rule of Exponents to simplify the expression \( 13^{10} \cdot 13^{4} \cdot \) (1 point) \( 13^{40} \) \( 169^{40} \) \( 13^{14} \) \( 169^{14} \) Check answer Remaining Attempts: 3
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
When you're multiplying exponents with the same base, you can simply add the exponents together. In this case, you have \( 13^{10} \cdot 13^{4} \). If you add the exponents, \( 10 + 4 = 14 \), which means the expression simplifies to \( 13^{14} \). So the correct answer is \( 13^{14} \)! Now, just a little tip: remember, the Product Rule of Exponents is not just for two exponents—feel free to apply it to as many terms as you like! For instance, \( a^m \cdot a^n \cdot a^p = a^{m+n+p} \)! If you're ever unsure, don't hesitate to revisit the basics. The exponents' rules are foundational and will serve you well in more complex algebraic manipulations!
