Pregunta
upstudy study bank question image url

Which function will have a \( y \)-intercept at -1 and an amplitude of 2 ? \( f(x)=-\sin (x)-1 \) \( f(x)=-2 \sin (x)-1 \) \( f(x)=-\cos (x) \) \( f(x)=-2 \cos (x)-1 \)

Ask by Riley Matthews. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( f(x) = -2 \sin(x) - 1 \) has a \( y \)-intercept at -1 and an amplitude of 2.

Solución

To determine which function has a \( y \)-intercept at -1 and an amplitude of 2, we need to analyze each function based on these criteria. 1. **Amplitude**: The amplitude of a sine or cosine function \( A \sin(x) \) or \( A \cos(x) \) is given by the absolute value of the coefficient \( A \). Therefore, the amplitude is \( |A| \). 2. **Y-intercept**: The \( y \)-intercept of a function \( f(x) \) is found by evaluating \( f(0) \). Now, let's analyze each function: 1. **Function**: \( f(x) = -\sin(x) - 1 \) - Amplitude: \( |A| = |-1| = 1 \) - Y-intercept: \( f(0) = -\sin(0) - 1 = -0 - 1 = -1 \) 2. **Function**: \( f(x) = -2 \sin(x) - 1 \) - Amplitude: \( |A| = |-2| = 2 \) - Y-intercept: \( f(0) = -2 \sin(0) - 1 = -2(0) - 1 = -1 \) 3. **Function**: \( f(x) = -\cos(x) \) - Amplitude: \( |A| = |-1| = 1 \) - Y-intercept: \( f(0) = -\cos(0) = -1 \) 4. **Function**: \( f(x) = -2 \cos(x) - 1 \) - Amplitude: \( |A| = |-2| = 2 \) - Y-intercept: \( f(0) = -2 \cos(0) - 1 = -2(1) - 1 = -2 - 1 = -3 \) Now, summarizing the results: - \( f(x) = -\sin(x) - 1 \): Amplitude = 1, Y-intercept = -1 - \( f(x) = -2 \sin(x) - 1 \): Amplitude = 2, Y-intercept = -1 - \( f(x) = -\cos(x) \): Amplitude = 1, Y-intercept = -1 - \( f(x) = -2 \cos(x) - 1 \): Amplitude = 2, Y-intercept = -3 The function that has a \( y \)-intercept at -1 and an amplitude of 2 is: \[ \boxed{f(x) = -2 \sin(x) - 1} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find a function with a \( y \)-intercept at -1 and an amplitude of 2, let's start with the amplitude. The amplitude of a sine or cosine function is determined by the coefficient in front of the function. Since we need an amplitude of 2, we should look for a function with a coefficient of 2 or -2. Now, for the \( y \)-intercept, we can find it by evaluating the function at \( x = 0 \). For \( f(x) = -2 \sin(x) - 1 \) and \( f(x) = -2 \cos(x) - 1 \), we have: 1. \( f(0) = -2 \sin(0) - 1 = -1 \) 2. \( f(0) = -2 \cos(0) - 1 = -2 - 1 = -3 \) We see that \( f(x) = -2 \sin(x) - 1 \) meets both criteria, as it has an amplitude of 2 and a \( y \)-intercept of -1. The correct answer is \( f(x) = -2 \sin(x) - 1 \). The remaining options do not fit the requirements, as they either provide the wrong amplitude or intercept.

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad