For each function, choose whether its graph opens upward or downward. \( y=\frac{1}{2}|x|: \) upward \( \quad y=-\frac{1}{3}|x|: \) downward \( v \quad y=-2|x|: \) downward \( v \) b) Choose the equation with the widest graph.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
The graphs of the functions can be understood based on the coefficients in front of the absolute value. For \( y=\frac{1}{2}|x| \), it opens upward because the coefficient is positive, while both \( y=-\frac{1}{3}|x| \) and \( y=-2|x| \) open downward as their coefficients are negative. Between these, \( y=-\frac{1}{3}|x| \) has a wider shape compared to \( y=-2|x| \) because a smaller absolute value in front of \(|x|\) results in a wider graph. Now, will the comparison of slopes based on the coefficients help visualize this? Absolutely! For instance, a coefficient of \(\frac{1}{2}\) indicates a gentle climb, while \(-2\) portrays a steeper descent. The smaller the absolute value of the coefficient for these downward graphs, the wider the V shape becomes!
