Pregunta
upstudy study bank question image url

Solve and graph on a number line. \( 18 x^{2}+9 x+10>-10 \)

Ask by Best Curry. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inequality \(18x^{2}+9x+10>-10\) is true for all real numbers. On a number line, this means the entire line is shaded.

Solución

Solve the equation \( 18x^2+9x+10>-10 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(18x^{2}+9x+10>-10\) - step1: Move the expression to the left side: \(18x^{2}+9x+10-\left(-10\right)>0\) - step2: Subtract the numbers: \(18x^{2}+9x+20>0\) - step3: Rewrite the expression: \(18x^{2}+9x+20=0\) - step4: Add or subtract both sides: \(18x^{2}+9x=-20\) - step5: Divide both sides: \(\frac{18x^{2}+9x}{18}=\frac{-20}{18}\) - step6: Evaluate: \(x^{2}+\frac{1}{2}x=-\frac{10}{9}\) - step7: Add the same value to both sides: \(x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{10}{9}+\frac{1}{16}\) - step8: Simplify the expression: \(\left(x+\frac{1}{4}\right)^{2}=-\frac{151}{144}\) - step9: The statement is false for any value of \(x:\) \(x \notin \mathbb{R}\) - step10: Choose a value: \(x=0\) - step11: Test the chosen value: \(x \in \mathbb{R}\) The solution to the inequality \(18x^{2}+9x+10>-10\) is all real numbers, which means that the inequality is true for any value of \(x\). To graph this on a number line, we can represent all real numbers on the number line. Since the inequality is true for any value of \(x\), the entire number line will be shaded to indicate that the inequality is satisfied for all real numbers.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First, let's simplify the inequality by bringing all terms to one side: \[ 18x^2 + 9x + 10 + 10 > 0 \] This simplifies to: \[ 18x^2 + 9x + 20 > 0 \] Now, to find where this quadratic expression is greater than zero, we can first determine the roots using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 18 \), \( b = 9 \), and \( c = 20 \). Calculating the discriminant: \[ b^2 - 4ac = 9^2 - 4(18)(20) = 81 - 1440 = -1359 \] Since the discriminant is negative, the quadratic has no real roots, meaning it does not cross the x-axis. To determine the sign of the quadratic expression, we can evaluate it at a test point, say, \( x=0 \): \[ 18(0)^2 + 9(0) + 20 = 20 > 0 \] Since the quadratic is positive at \( x=0 \) and has no real roots, it is positive for all real values of \( x \). We can graph this by drawing a number line and shading all of it to represent: \( (-\infty, +\infty) \). The solution is all real numbers. Keep in mind, quadratics that don’t touch the x-axis can be a bit tricky, like trying to dance on a slippery floor — you can slip and not even realize! Always check the sign of the quadratic at a test point for confirmation. Now, if you’re interested in exploring inequalities further, don't forget to check polynomial long division — it's like breaking down a cake for easier sharing! Or, delve into the realm of complex numbers, which adds an exciting twist to your math adventures!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad