Responder
Here are the solutions for each inequality:
1. **1.1.** \( x^{2}+x-6>0 \): \( x < -3 \) or \( x > 2 \)
2. **1.2.** \( -x^{2}+x+2>0 \): \( -1 < x < 2 \)
3. **1.3.** \( -x^{2}+x+2 \geq x^{2}+x-6 \): \( -2 \leq x \leq 2 \)
4. **1.4.** \( x^{2}+x-6 \leq 0 \): \( -3 \leq x \leq 2 \)
Solución
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(x^{2}+x-6\leq 0\)
- step1: Rewrite the expression:
\(x^{2}+x-6=0\)
- step2: Factor the expression:
\(\left(x-2\right)\left(x+3\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&x-2=0\\&x+3=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=2\\&x=-3\end{align}\)
- step5: Determine the test intervals:
\(\begin{align}&x<-3\\&-32\end{align}\)
- step6: Choose a value:
\(\begin{align}&x_{1}=-4\\&x_{2}=-1\\&x_{3}=3\end{align}\)
- step7: Test the chosen value:
\(\begin{align}&x<-3\textrm{ }\textrm{is not a solution}\\&-32\textrm{ }\textrm{is not a solution}\end{align}\)
- step8: Include the critical value:
\(\begin{align}&-3\leq x\leq 2\textrm{ }\textrm{is the solution}\end{align}\)
- step9: The final solution is \(-3\leq x\leq 2:\)
\(-3\leq x\leq 2\)
Solve the equation \( -x^{2}+x+2>0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(-x^{2}+x+2>0\)
- step1: Rewrite the expression:
\(-x^{2}+x+2=0\)
- step2: Factor the expression:
\(\left(-x+2\right)\left(x+1\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&-x+2=0\\&x+1=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=2\\&x=-1\end{align}\)
- step5: Determine the test intervals:
\(\begin{align}&x<-1\\&-12\end{align}\)
- step6: Choose a value:
\(\begin{align}&x_{1}=-2\\&x_{2}=1\\&x_{3}=3\end{align}\)
- step7: Test the chosen value:
\(\begin{align}&x<-1\textrm{ }\textrm{is not a solution}\\&-12\textrm{ }\textrm{is not a solution}\end{align}\)
- step8: The final solution is \(-10 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(x^{2}+x-6>0\)
- step1: Rewrite the expression:
\(x^{2}+x-6=0\)
- step2: Factor the expression:
\(\left(x-2\right)\left(x+3\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&x-2=0\\&x+3=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=2\\&x=-3\end{align}\)
- step5: Determine the test intervals:
\(\begin{align}&x<-3\\&-32\end{align}\)
- step6: Choose a value:
\(\begin{align}&x_{1}=-4\\&x_{2}=-1\\&x_{3}=3\end{align}\)
- step7: Test the chosen value:
\(\begin{align}&x<-3\textrm{ }\textrm{is the solution}\\&-32\textrm{ }\textrm{is the solution}\end{align}\)
- step8: The final solution is \(x \in \left(-\infty,-3\right)\cup \left(2,+\infty\right):\)
\(x \in \left(-\infty,-3\right)\cup \left(2,+\infty\right)\)
Solve the equation \( -x^{2}+x+2 \geq x^{2}+x-6 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(-x^{2}+x+2\geq x^{2}+x-6\)
- step1: Cancel equal terms:
\(-x^{2}+2\geq x^{2}-6\)
- step2: Move the expression to the left side:
\(-x^{2}+2-\left(x^{2}-6\right)\geq 0\)
- step3: Calculate:
\(-2x^{2}+8\geq 0\)
- step4: Rewrite the expression:
\(-2x^{2}+8=0\)
- step5: Move the constant to the right side:
\(-2x^{2}=0-8\)
- step6: Remove 0:
\(-2x^{2}=-8\)
- step7: Change the signs:
\(2x^{2}=8\)
- step8: Divide both sides:
\(\frac{2x^{2}}{2}=\frac{8}{2}\)
- step9: Divide the numbers:
\(x^{2}=4\)
- step10: Simplify the expression:
\(x=\pm \sqrt{4}\)
- step11: Simplify:
\(x=\pm 2\)
- step12: Separate into possible cases:
\(\begin{align}&x=2\\&x=-2\end{align}\)
- step13: Determine the test intervals:
\(\begin{align}&x<-2\\&-22\end{align}\)
- step14: Choose a value:
\(\begin{align}&x_{1}=-3\\&x_{2}=0\\&x_{3}=3\end{align}\)
- step15: Test the chosen value:
\(\begin{align}&x<-2\textrm{ }\textrm{is not a solution}\\&-22\textrm{ }\textrm{is not a solution}\end{align}\)
- step16: Include the critical value:
\(\begin{align}&-2\leq x\leq 2\textrm{ }\textrm{is the solution}\end{align}\)
- step17: The final solution is \(-2\leq x\leq 2:\)
\(-2\leq x\leq 2\)
Here are the solutions for each of the inequalities provided:
### 1.1. Solve \( x^{2}+x-6>0 \)
To solve the inequality \( x^{2}+x-6>0 \), we first find the roots of the corresponding equation \( x^{2}+x-6=0 \). The roots are \( x = -3 \) and \( x = 2 \).
The solution to the inequality is:
\[
x \in (-\infty, -3) \cup (2, +\infty)
\]
### 1.2. Solve \( -x^{2}+x+2>0 \)
For the inequality \( -x^{2}+x+2>0 \), we find the roots of the equation \( -x^{2}+x+2=0 \). The roots are \( x = -1 \) and \( x = 2 \).
The solution to the inequality is:
\[
-1 < x < 2
\]
### 1.3. Solve \( -x^{2}+x+2 \geq x^{2}+x-6 \)
Rearranging the inequality gives us:
\[
-x^{2}+x+2 - (x^{2}+x-6) \geq 0
\]
This simplifies to:
\[
-2x^{2} + 8 \geq 0
\]
Factoring gives:
\[
-2(x^{2}-4) \geq 0 \implies -2(x-2)(x+2) \geq 0
\]
The roots are \( x = -2 \) and \( x = 2 \).
The solution to the inequality is:
\[
-2 \leq x \leq 2
\]
### 1.4. Solve \( x^{2}+x-6 \leq 0 \)
This is similar to the first inequality. The roots are \( x = -3 \) and \( x = 2 \).
The solution to the inequality is:
\[
-3 \leq x \leq 2
\]
### Summary of Solutions:
- **1.1:** \( x \in (-\infty, -3) \cup (2, +\infty) \)
- **1.2:** \( -1 < x < 2 \)
- **1.3:** \( -2 \leq x \leq 2 \)
- **1.4:** \( -3 \leq x \leq 2 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución