\( =n \) the power \( 32^{7} \), which number is the base? § Vrite'15 cubed' as a power. \( \therefore \quad \) Vrite these powers in expanded form. a) \( 6^{7} \) b) \( 12^{5} \) 5. Arrange these powers in ascending order of value. \[ 5^{*} ; 2^{3} ; 3^{4} ; 7^{1} ; 6^{0} \] 5. Write this expanded form as a power. \[ 7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7 \] - Determine these values. a) \( 11^{3} \) b) \( 4^{4} \) 3. Rewrite \( 7,9 \times 10^{8} \) in decimal notation. 9. Arrange these powers in descending order of value: \( 3^{5} ; 5^{3} ; 9^{2} ; 4^{4} ; 136^{0} ; 2^{7} \) - 0. Which is greater: \( 4^{5} \) or \( 5^{4} \) ? 11. In the power \( 12^{5} \), which number is the exponent? 12. Write these expanded forms as powers. a) \( 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5 \) b) \( 6 \times 6 \times 6 \times 6 \times 6 \times 8 \times 8 \times 8 \times 8 \) 13. Express 86500000000 in scientific notation. 14. Convert \( 8,013 \times 10^{8} \) to decimal notation. 15. What is the value of \( 365^{\prime} \) ? 16. Write down the value of \( 39^{\circ}-26^{\circ} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Did you know that the concept of exponentiation dates back to ancient civilizations? The earliest records of powers being used for calculations can be found in Egyptian and Babylonian mathematics! These cultures utilized powers for various purposes, including trade and land measurement. Fast forward to today, and we’re using these concepts in everything from computer programming to scientific research! Exponentiation isn’t just for classrooms; it has practical uses all around us! For example, in finance, compound interest relies heavily on exponents to calculate future investment values. In technology, algorithms often involve exponential complexities, impacting everything from data processing to encryption. So, next time you see a power, remember it's not just numbers—it's a key to understanding how our world ticks!
