Pregunta
upstudy study bank question image url

4.3.2 Hence deduce the minimum value of \( \sin x+\cos x \) and give the corresponding values of \( x \), for \( x \in\left[-360^{\circ} ; 360^{\circ}\right] \). TOTAL:

Ask by John Cox. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The minimum value of \( \sin x + \cos x \) is \( -\sqrt{2} \), which occurs at \( x = 225^\circ \) and \( x = -135^\circ \) within the interval \([-360^\circ, 360^\circ]\).

Solución

To find the minimum value of \( \sin x + \cos x \), we can start by rewriting the expression in a more manageable form. 1. **Rewrite the expression**: We can express \( \sin x + \cos x \) in terms of a single sine function. We know that: \[ \sin x + \cos x = \sqrt{2} \left( \sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} \right) \] This can be rewritten using the sine addition formula: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + 45^\circ\right) \] 2. **Determine the range**: The sine function, \( \sin\left(x + 45^\circ\right) \), has a range of \([-1, 1]\). Therefore, the expression \( \sqrt{2} \sin\left(x + 45^\circ\right) \) will have a range of: \[ [-\sqrt{2}, \sqrt{2}] \] 3. **Find the minimum value**: The minimum value of \( \sin x + \cos x \) is thus: \[ -\sqrt{2} \] 4. **Find corresponding values of \( x \)**: To find the values of \( x \) for which \( \sin\left(x + 45^\circ\right) = -1 \): \[ x + 45^\circ = 270^\circ + k \cdot 360^\circ \quad (k \in \mathbb{Z}) \] This simplifies to: \[ x = 225^\circ + k \cdot 360^\circ \] Now, we need to find \( x \) within the interval \([-360^\circ, 360^\circ]\): - For \( k = 0 \): \( x = 225^\circ \) - For \( k = -1 \): \( x = 225^\circ - 360^\circ = -135^\circ \) Thus, the corresponding values of \( x \) are \( 225^\circ \) and \( -135^\circ \). ### Summary: - The minimum value of \( \sin x + \cos x \) is \( -\sqrt{2} \). - The corresponding values of \( x \) in the interval \([-360^\circ, 360^\circ]\) are \( 225^\circ \) and \( -135^\circ \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the minimum value of \( \sin x + \cos x \), we can use a clever trick by rewriting it as \( R \sin(x + \phi) \) where \( R = \sqrt{1^2 + 1^2} = \sqrt{2} \) and \( \phi = \frac{\pi}{4} \). The function \( R \sin(x + \phi) \) reaches its minimum value of \(-R\) when \( \sin(x + \phi) = -1\). Thus, the minimum value of \( \sin x + \cos x \) is \(-\sqrt{2}\). Now, to find the corresponding values of \( x \), we set \( x + \frac{\pi}{4} = \frac{3\pi}{2} + 2k\pi \) (for \( k \in \mathbb{Z} \)). Solving gives \( x = \frac{3\pi}{2} - \frac{\pi}{4} + 2k\pi = \frac{5\pi}{4} + 2k\pi \) or \( x = -\frac{7\pi}{4} + 2k\pi \). Converting to degrees, these correspond to \( x = 225^\circ \) or \( x = -315^\circ \) within the interval \( \left[-360^\circ; 360^\circ\right] \).

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad