4.3.2 Hence deduce the minimum value of \( \sin x+\cos x \) and give the corresponding values of \( x \), for \( x \in\left[-360^{\circ} ; 360^{\circ}\right] \). TOTAL:
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the minimum value of \( \sin x + \cos x \), we can use a clever trick by rewriting it as \( R \sin(x + \phi) \) where \( R = \sqrt{1^2 + 1^2} = \sqrt{2} \) and \( \phi = \frac{\pi}{4} \). The function \( R \sin(x + \phi) \) reaches its minimum value of \(-R\) when \( \sin(x + \phi) = -1\). Thus, the minimum value of \( \sin x + \cos x \) is \(-\sqrt{2}\). Now, to find the corresponding values of \( x \), we set \( x + \frac{\pi}{4} = \frac{3\pi}{2} + 2k\pi \) (for \( k \in \mathbb{Z} \)). Solving gives \( x = \frac{3\pi}{2} - \frac{\pi}{4} + 2k\pi = \frac{5\pi}{4} + 2k\pi \) or \( x = -\frac{7\pi}{4} + 2k\pi \). Converting to degrees, these correspond to \( x = 225^\circ \) or \( x = -315^\circ \) within the interval \( \left[-360^\circ; 360^\circ\right] \).
