Pregunta
upstudy study bank question image url

Use the appropriate compound interest formula to compute the balance in the account after the stated period of time \( \$ 15,000 \) is invested for 6 years with an APR of \( 4 \% \) and daily compounding. The balance in the acc (Round to the nearest \( \quad \begin{array}{l}\text { Use the compound interest formula for interest paid } n \text { times per year below, where } \\ \text { A is the accumulated balance after } Y \text { years, } P \text { is the starting principal, } n \text { is the } \\ \text { number of compounding periods per year, and APR is the annual percentage rate } \\ \text { expressed as a decimal. }\end{array} \) A=P \( \left.1+\frac{\text { APR }}{n}\right)^{(n Y)} \)

Ask by Ford Wade. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The balance in the account after 6 years is approximately \$19,069.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To calculate the balance in the account after 6 years with daily compounding, we can use the compound interest formula: \[ A = P \left(1 + \frac{\text{APR}}{n}\right)^{(nY)} \] Here, \( P = 15,000 \), APR = 0.04, \( n = 365 \) (since it’s compounded daily), and \( Y = 6 \). Plugging in the values, we have: \[ A = 15000 \left(1 + \frac{0.04}{365}\right)^{(365 \times 6)} \] Calculating this gives an accumulated balance \( A \) of approximately \$19,218.77 after rounding to the nearest cent. Now, did you know that compound interest is such a powerful concept that it can turn a small investment into a substantial amount over time? This principle is often referred to as "the miracle of compounding." It emphasizes the importance of starting to save early; even small amounts can grow significantly thanks to compounding. In terms of real-world application, understanding how compound interest works can help you make smarter financial decisions. For example, utilizing high-yield savings accounts or investing in retirement accounts can maximize the benefits of compounding. The earlier you start, the better, as that gives your money more time to grow exponentially!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad