Pregunta
upstudy study bank question image url

Simplify the following: \( \begin{array}{lll}\text { (a) } \frac{2^{2 x}-2^{x}}{2^{x}-1} & \text { (b) } \frac{2^{2 x}-1}{2^{x}+1} & \text { (c) } \frac{9^{x}-9}{3^{x}-3} \\ \text { (d) } \frac{16-4^{x}}{2^{x}-4} & \end{array} \)

Ask by Bartlett Morrison. in South Africa
Jan 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Simplify the expressions as follows: (a) \(2^{x}\) (b) \(2^{x}-1\) (c) \(3^{x}+3\) (d) \(-4-2^{x}\)

Solución

Calculate or simplify the expression \( (2^(2*x)-2^x)/(2^x-1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2^{2x}-2^{x}\right)}{\left(2^{x}-1\right)}\) - step1: Remove the parentheses: \(\frac{2^{2x}-2^{x}}{2^{x}-1}\) - step2: Rewrite the expression: \(\frac{\left(2^{x}\right)^{2}-2^{x}}{2^{x}-1}\) - step3: Factor the expression: \(\frac{2^{x}\left(2^{x}-1\right)}{2^{x}-1}\) - step4: Reduce the fraction: \(2^{x}\) Calculate or simplify the expression \( (2^(2*x)-1)/(2^x+1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2^{2x}-1\right)}{\left(2^{x}+1\right)}\) - step1: Remove the parentheses: \(\frac{2^{2x}-1}{2^{x}+1}\) - step2: Rewrite the expression: \(\frac{\left(2^{x}\right)^{2}-1}{2^{x}+1}\) - step3: Calculate: \(\frac{\left(2^{x}-1\right)\left(2^{x}+1\right)}{2^{x}+1}\) - step4: Reduce the fraction: \(2^{x}-1\) Calculate or simplify the expression \( (9^x-9)/(3^x-3) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(9^{x}-9\right)}{\left(3^{x}-3\right)}\) - step1: Remove the parentheses: \(\frac{9^{x}-9}{3^{x}-3}\) - step2: Evaluate: \(\frac{3\left(3^{2x-1}-3\right)}{3\left(3^{x-1}-1\right)}\) - step3: Evaluate: \(\frac{3^{2x-1}-3}{3^{x-1}-1}\) - step4: Rewrite the expression: \(\frac{\frac{1}{3}\left(3^{x}\right)^{2}-3}{\frac{1}{3}\times 3^{x}-1}\) - step5: Rewrite the expression: \(\frac{\frac{\left(3^{x}\right)^{2}-9}{3}}{\frac{1}{3}\times 3^{x}-1}\) - step6: Rewrite the expression: \(\frac{\frac{\left(3^{x}\right)^{2}-9}{3}}{\frac{3^{x}-3}{3}}\) - step7: Multiply by the reciprocal: \(\frac{\left(3^{x}\right)^{2}-9}{3}\times \frac{3}{3^{x}-3}\) - step8: Rewrite the expression: \(\frac{\left(3^{x}-3\right)\left(3^{x}+3\right)}{3}\times \frac{3}{3^{x}-3}\) - step9: Reduce the fraction: \(\left(3^{x}+3\right)\times 1\) - step10: Multiply the terms: \(3^{x}+3\) Calculate or simplify the expression \( (16-4^x)/(2^x-4) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(16-4^{x}\right)}{\left(2^{x}-4\right)}\) - step1: Remove the parentheses: \(\frac{16-4^{x}}{2^{x}-4}\) - step2: Evaluate: \(\frac{4\left(2^{2}-2^{2x-2}\right)}{4\left(2^{x-2}-1\right)}\) - step3: Evaluate: \(\frac{2^{2}-2^{2x-2}}{2^{x-2}-1}\) - step4: Calculate: \(\frac{4-2^{2x-2}}{2^{x-2}-1}\) - step5: Rewrite the expression: \(\frac{4-\frac{1}{4}\left(2^{x}\right)^{2}}{\frac{1}{4}\times 2^{x}-1}\) - step6: Rewrite the expression: \(\frac{\frac{16-\left(2^{x}\right)^{2}}{4}}{\frac{1}{4}\times 2^{x}-1}\) - step7: Rewrite the expression: \(\frac{\frac{16-\left(2^{x}\right)^{2}}{4}}{\frac{2^{x}-4}{4}}\) - step8: Multiply by the reciprocal: \(\frac{16-\left(2^{x}\right)^{2}}{4}\times \frac{4}{2^{x}-4}\) - step9: Rewrite the expression: \(\frac{\left(2^{x}-4\right)\left(-4-2^{x}\right)}{4}\times \frac{4}{2^{x}-4}\) - step10: Reduce the fraction: \(\left(-4-2^{x}\right)\times 1\) - step11: Multiply the terms: \(-\left(4+2^{x}\right)\) - step12: Calculate: \(-4-2^{x}\) The simplified expressions are: (a) \(2^{x}\) (b) \(2^{x}-1\) (c) \(3^{x}+3\) (d) \(-4-2^{x}\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's simplify each expression step by step. (a) \( \frac{2^{2x} - 2^x}{2^x - 1} \) We can factor the numerator: \[ 2^{2x} - 2^x = 2^x(2^x - 1) \] Now we can rewrite the expression: \[ \frac{2^x(2^x - 1)}{2^x - 1} \] Now, we can cancel \(2^x - 1\) in the numerator and denominator (assuming \(2^x - 1 \neq 0\)): \[ = 2^x \] So, the simplified form for (a) is: \[ 2^x \] (b) \( \frac{2^{2x} - 1}{2^x + 1} \) This expression is recognizable as a difference of squares: \[ 2^{2x} - 1 = (2^x - 1)(2^x + 1) \] So the expression becomes: \[ \frac{(2^x - 1)(2^x + 1)}{2^x + 1} \] Now we can cancel \(2^x + 1\) in the numerator and denominator (assuming \(2^x + 1 \neq 0\)): \[ = 2^x - 1 \] Thus, the simplified form for (b) is: \[ 2^x - 1 \] (c) \( \frac{9^x - 9}{3^x - 3} \) We can express \(9^x\) in terms of \(3^x\): \[ 9^x = (3^2)^x = (3^x)^2 \] Thus, we can write: \[ \frac{(3^x)^2 - 9}{3^x - 3} = \frac{(3^x)^2 - 3^2}{3^x - 3} \] Again, applying the difference of squares: \[ = \frac{(3^x - 3)(3^x + 3)}{3^x - 3} \] Canceling \(3^x - 3\) gives: \[ = 3^x + 3 \] Therefore, the simplified form for (c) is: \[ 3^x + 3 \] (d) \( \frac{16 - 4^x}{2^x - 4} \) Rewriting \(4^x\) in terms of \(2^x\): \[ 4^x = (2^2)^x = (2^x)^2 \] Now the expression becomes: \[ \frac{16 - (2^x)^2}{2^x - 4} \] Notice that \(16\) can be expressed as \(4^2\): \[ = \frac{4^2 - (2^x)^2}{2^x - 4} \] Applying the difference of squares: \[ = \frac{(4 - 2^x)(4 + 2^x)}{2^x - 4} = \frac{-(2^x - 4)(4 + 2^x)}{2^x - 4} \] Canceling \(2^x - 4\): \[ = -(4 + 2^x) \] Thus, the simplified form for (d) is: \[ -(4 + 2^x) \] So, our final simplified results are: (a) \(2^x\) (b) \(2^x - 1\) (c) \(3^x + 3\) (d) \(-(4 + 2^x)\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad