Simplify the following: \( \begin{array}{lll}\text { (a) } \frac{2^{2 x}-2^{x}}{2^{x}-1} & \text { (b) } \frac{2^{2 x}-1}{2^{x}+1} & \text { (c) } \frac{9^{x}-9}{3^{x}-3} \\ \text { (d) } \frac{16-4^{x}}{2^{x}-4} & \end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let's simplify each expression step by step. (a) \( \frac{2^{2x} - 2^x}{2^x - 1} \) We can factor the numerator: \[ 2^{2x} - 2^x = 2^x(2^x - 1) \] Now we can rewrite the expression: \[ \frac{2^x(2^x - 1)}{2^x - 1} \] Now, we can cancel \(2^x - 1\) in the numerator and denominator (assuming \(2^x - 1 \neq 0\)): \[ = 2^x \] So, the simplified form for (a) is: \[ 2^x \] (b) \( \frac{2^{2x} - 1}{2^x + 1} \) This expression is recognizable as a difference of squares: \[ 2^{2x} - 1 = (2^x - 1)(2^x + 1) \] So the expression becomes: \[ \frac{(2^x - 1)(2^x + 1)}{2^x + 1} \] Now we can cancel \(2^x + 1\) in the numerator and denominator (assuming \(2^x + 1 \neq 0\)): \[ = 2^x - 1 \] Thus, the simplified form for (b) is: \[ 2^x - 1 \] (c) \( \frac{9^x - 9}{3^x - 3} \) We can express \(9^x\) in terms of \(3^x\): \[ 9^x = (3^2)^x = (3^x)^2 \] Thus, we can write: \[ \frac{(3^x)^2 - 9}{3^x - 3} = \frac{(3^x)^2 - 3^2}{3^x - 3} \] Again, applying the difference of squares: \[ = \frac{(3^x - 3)(3^x + 3)}{3^x - 3} \] Canceling \(3^x - 3\) gives: \[ = 3^x + 3 \] Therefore, the simplified form for (c) is: \[ 3^x + 3 \] (d) \( \frac{16 - 4^x}{2^x - 4} \) Rewriting \(4^x\) in terms of \(2^x\): \[ 4^x = (2^2)^x = (2^x)^2 \] Now the expression becomes: \[ \frac{16 - (2^x)^2}{2^x - 4} \] Notice that \(16\) can be expressed as \(4^2\): \[ = \frac{4^2 - (2^x)^2}{2^x - 4} \] Applying the difference of squares: \[ = \frac{(4 - 2^x)(4 + 2^x)}{2^x - 4} = \frac{-(2^x - 4)(4 + 2^x)}{2^x - 4} \] Canceling \(2^x - 4\): \[ = -(4 + 2^x) \] Thus, the simplified form for (d) is: \[ -(4 + 2^x) \] So, our final simplified results are: (a) \(2^x\) (b) \(2^x - 1\) (c) \(3^x + 3\) (d) \(-(4 + 2^x)\)
