Responder
Here are the solutions for each equation using completing the square:
1. \( x^{2}-5 x+6=0 \): \( x=2 \) or \( x=3 \)
2. \( x^{2}-7 x=9 \): \( x=\frac{7-\sqrt{85}}{2} \) or \( x=\frac{7+\sqrt{85}}{2} \)
3. \( 2(x+1)^{2}-5=0 \): \( x=-\frac{2+\sqrt{10}}{2} \) or \( x=\frac{-2+\sqrt{10}}{2} \)
4. \( (2 x-1)(x+3)=2 \): \( x=-\frac{5+\sqrt{65}}{4} \) or \( x=\frac{-5+\sqrt{65}}{4} \)
5. \( 7 x^{2}=2-7 x \): \( x=-\frac{7+\sqrt{105}}{14} \) or \( x=\frac{-7+\sqrt{105}}{14} \)
6. \( 3 x-2 x(x+1)=2 \): No real solution
Solución
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}-5x+6=0\)
- step1: Factor the expression:
\(\left(x-3\right)\left(x-2\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-3=0\\&x-2=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=3\\&x=2\end{align}\)
- step4: Rewrite:
\(x_{1}=2,x_{2}=3\)
Solve the equation \( 3 x-2 x(x+1)=2 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve using the quadratic formula in the complex numbers system:
\(3x-2x\left(x+1\right)=2\)
- step1: Expand the expression:
\(x-2x^{2}=2\)
- step2: Move the expression to the left side:
\(x-2x^{2}-2=0\)
- step3: Rewrite in standard form:
\(-2x^{2}+x-2=0\)
- step4: Multiply both sides:
\(2x^{2}-x+2=0\)
- step5: Solve using the quadratic formula:
\(x=\frac{1\pm \sqrt{\left(-1\right)^{2}-4\times 2\times 2}}{2\times 2}\)
- step6: Simplify the expression:
\(x=\frac{1\pm \sqrt{\left(-1\right)^{2}-4\times 2\times 2}}{4}\)
- step7: Simplify the expression:
\(x=\frac{1\pm \sqrt{-15}}{4}\)
- step8: Simplify the expression:
\(x=\frac{1\pm \sqrt{15}\times i}{4}\)
- step9: Separate into possible cases:
\(\begin{align}&x=\frac{1+\sqrt{15}\times i}{4}\\&x=\frac{1-\sqrt{15}\times i}{4}\end{align}\)
- step10: Simplify the expression:
\(\begin{align}&x=\frac{1}{4}+\frac{\sqrt{15}}{4}i\\&x=\frac{1-\sqrt{15}\times i}{4}\end{align}\)
- step11: Simplify the expression:
\(\begin{align}&x=\frac{1}{4}+\frac{\sqrt{15}}{4}i\\&x=\frac{1}{4}-\frac{\sqrt{15}}{4}i\end{align}\)
- step12: Rewrite:
\(x_{1}=\frac{1}{4}-\frac{\sqrt{15}}{4}i,x_{2}=\frac{1}{4}+\frac{\sqrt{15}}{4}i\)
- step13: Remove the complex number(s):
\(\textrm{No real solution}\)
Solve the equation \( 2(x+1)^{2}-5=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(2\left(x+1\right)^{2}-5=0\)
- step1: Expand the expression:
\(2x^{2}+4x-3=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{-4\pm \sqrt{4^{2}-4\times 2\left(-3\right)}}{2\times 2}\)
- step3: Simplify the expression:
\(x=\frac{-4\pm \sqrt{4^{2}-4\times 2\left(-3\right)}}{4}\)
- step4: Simplify the expression:
\(x=\frac{-4\pm \sqrt{40}}{4}\)
- step5: Simplify the expression:
\(x=\frac{-4\pm 2\sqrt{10}}{4}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-4+2\sqrt{10}}{4}\\&x=\frac{-4-2\sqrt{10}}{4}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=\frac{-2+\sqrt{10}}{2}\\&x=\frac{-4-2\sqrt{10}}{4}\end{align}\)
- step8: Simplify the expression:
\(\begin{align}&x=\frac{-2+\sqrt{10}}{2}\\&x=-\frac{2+\sqrt{10}}{2}\end{align}\)
- step9: Rewrite:
\(x_{1}=-\frac{2+\sqrt{10}}{2},x_{2}=\frac{-2+\sqrt{10}}{2}\)
Solve the equation \( x^{2}-7 x=9 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(x^{2}-7x=9\)
- step1: Move the expression to the left side:
\(x^{2}-7x-9=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{7\pm \sqrt{\left(-7\right)^{2}-4\left(-9\right)}}{2}\)
- step3: Simplify the expression:
\(x=\frac{7\pm \sqrt{85}}{2}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{7+\sqrt{85}}{2}\\&x=\frac{7-\sqrt{85}}{2}\end{align}\)
- step5: Rewrite:
\(x_{1}=\frac{7-\sqrt{85}}{2},x_{2}=\frac{7+\sqrt{85}}{2}\)
Solve the equation \( (2 x-1)(x+3)=2 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(\left(2x-1\right)\left(x+3\right)=2\)
- step1: Expand the expression:
\(2x^{2}+5x-3=2\)
- step2: Move the expression to the left side:
\(2x^{2}+5x-5=0\)
- step3: Solve using the quadratic formula:
\(x=\frac{-5\pm \sqrt{5^{2}-4\times 2\left(-5\right)}}{2\times 2}\)
- step4: Simplify the expression:
\(x=\frac{-5\pm \sqrt{5^{2}-4\times 2\left(-5\right)}}{4}\)
- step5: Simplify the expression:
\(x=\frac{-5\pm \sqrt{65}}{4}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-5+\sqrt{65}}{4}\\&x=\frac{-5-\sqrt{65}}{4}\end{align}\)
- step7: Rewrite the fraction:
\(\begin{align}&x=\frac{-5+\sqrt{65}}{4}\\&x=-\frac{5+\sqrt{65}}{4}\end{align}\)
- step8: Rewrite:
\(x_{1}=-\frac{5+\sqrt{65}}{4},x_{2}=\frac{-5+\sqrt{65}}{4}\)
Solve the equation \( 7 x^{2}=2-7 x \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(7x^{2}=2-7x\)
- step1: Move the expression to the left side:
\(7x^{2}-2+7x=0\)
- step2: Rewrite in standard form:
\(7x^{2}+7x-2=0\)
- step3: Solve using the quadratic formula:
\(x=\frac{-7\pm \sqrt{7^{2}-4\times 7\left(-2\right)}}{2\times 7}\)
- step4: Simplify the expression:
\(x=\frac{-7\pm \sqrt{7^{2}-4\times 7\left(-2\right)}}{14}\)
- step5: Simplify the expression:
\(x=\frac{-7\pm \sqrt{105}}{14}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-7+\sqrt{105}}{14}\\&x=\frac{-7-\sqrt{105}}{14}\end{align}\)
- step7: Rewrite the fraction:
\(\begin{align}&x=\frac{-7+\sqrt{105}}{14}\\&x=-\frac{7+\sqrt{105}}{14}\end{align}\)
- step8: Rewrite:
\(x_{1}=-\frac{7+\sqrt{105}}{14},x_{2}=\frac{-7+\sqrt{105}}{14}\)
Here are the solutions for each equation using the method of completing the square:
1. **Equation:** \( x^{2}-5 x+6=0 \)
- Completing the square gives us:
\[
(x-2)(x-3)=0
\]
- **Solutions:** \( x_{1}=2, x_{2}=3 \)
2. **Equation:** \( x^{2}-7 x=9 \)
- Rearranging gives us:
\[
x^{2}-7 x - 9=0
\]
- Completing the square results in:
\[
x = \frac{7 \pm \sqrt{85}}{2}
\]
- **Solutions:** \( x_{1}=\frac{7-\sqrt{85}}{2}, x_{2}=\frac{7+\sqrt{85}}{2} \)
3. **Equation:** \( 2(x+1)^{2}-5=0 \)
- Rearranging gives us:
\[
2(x+1)^{2}=5
\]
- Completing the square results in:
\[
x = -1 \pm \frac{\sqrt{10}}{2}
\]
- **Solutions:** \( x_{1}=-\frac{2+\sqrt{10}}{2}, x_{2}=\frac{-2+\sqrt{10}}{2} \)
4. **Equation:** \( (2 x-1)(x+3)=2 \)
- Rearranging gives us:
\[
2x^2 + 5x - 5 = 0
\]
- Completing the square results in:
\[
x = \frac{-5 \pm \sqrt{65}}{4}
\]
- **Solutions:** \( x_{1}=-\frac{5+\sqrt{65}}{4}, x_{2}=\frac{-5+\sqrt{65}}{4} \)
5. **Equation:** \( 7 x^{2}=2-7 x \)
- Rearranging gives us:
\[
7x^2 + 7x - 2 = 0
\]
- Completing the square results in:
\[
x = \frac{-7 \pm \sqrt{105}}{14}
\]
- **Solutions:** \( x_{1}=-\frac{7+\sqrt{105}}{14}, x_{2}=\frac{-7+\sqrt{105}}{14} \)
6. **Equation:** \( 3 x-2 x(x+1)=2 \)
- Rearranging gives us:
\[
-2x^2 + x - 2 = 0
\]
- Completing the square shows that there are no real solutions.
- **Solutions:** No real solution
These solutions provide the values of \( x \) for each equation as required.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución