Pregunta
Apply the Zero Power Rule to create an equivalent expression to \( \frac{4}{3}\left(-2+1^{0}\right) \). (1 point) An equivalent expression to \( \frac{4}{3}\left(-2+1^{0}\right) \) is \( \frac{4}{3}(-2+\square) \). Check answer Remainina Attemnts: 3
Ask by Pritchard Daniel. in the United States
Feb 05,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
An equivalent expression is \( \frac{4}{3}(-2 + 1) \).
Solución
An equivalent expression to \( \frac{4}{3}\left(-2 + 1^{0}\right) \) using the Zero Power Rule is:
\[ \frac{4}{3}(-2 + \boxed{1}) \]
**Explanation:**
The Zero Power Rule states that any non-zero number raised to the power of 0 is 1. Therefore, \(1^{0} = 1\).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
Alright, let's get our math hats on! The Zero Power Rule states that any non-zero number raised to the power of 0 equals 1. So, in your expression, \( 1^0 = 1 \). This means we can simplify your original equation like this: \( \frac{4}{3}\left(-2+1^{0}\right) = \frac{4}{3}(-2 + 1) \). Now, combine the terms inside the parentheses: \( -2 + 1 = -1 \). Now we substitute back, making the equivalent expression: \( \frac{4}{3}(-1) \). To fill in the box, the answer is \( -1 \). Thus, we have \( \frac{4}{3}(-2+\square) \) where \( \square = -1 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium