Pregunta
Let \( \vec{x}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right] \) and \( \vec{y}=\left[\begin{array}{c}-2 \\ 5 \\ 5\end{array}\right] \). Then \( \vec{x} \cdot \vec{y}=\square \)
Ask by Patel Tyler. in the United States
Feb 20,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The dot product of vectors x and y is 11.
Solución
To find the dot product of vectors x and y, we multiply the corresponding components of the vectors and then sum the results.
For x = [2, 1, 2] and y = [-2, 5, 5]:
Dot product = (2 × -2) + (1 × 5) + (2 × 5)
= (-4) + 5 + 10
= 11
So, x ⋅ y = 11.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To calculate the dot product \( \vec{x} \cdot \vec{y} \), you multiply corresponding components of the vectors and then sum those products: \[ \vec{x} \cdot \vec{y} = (2)(-2) + (1)(5) + (2)(5) = -4 + 5 + 10 \] Now, simplify it: \[ -4 + 5 + 10 = 11 \] Thus, \( \vec{x} \cdot \vec{y} = 11 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium