Pregunta
upstudy study bank question image url

How many solutions does the system have? \( \left\{\begin{array}{l}3 y=-6 x+9 \\ y=-6 x+9\end{array}\right. \) Choose 1 answer: (A) Exactly one solution (B) No solutions (C) Infinitely many solutions

Ask by Wheeler Park. in the United States
Feb 07,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has exactly one solution: (3/2, 0).

Solución

To solve the system   {    3y = -6x + 9    y = -6x + 9   } start by rewriting the first equation in slope-intercept form by dividing both sides by 3:   y = (-6/3)x + 9/3   y = -2x + 3 Now the system becomes:   y = -2x + 3   y = -6x + 9 Since these are two linear equations with different slopes (-2 and -6), they represent two distinct non-parallel lines that will intersect exactly once. To find the intersection, set the right-hand sides equal to each other:   -2x + 3 = -6x + 9 Add 6x to both sides:   4x + 3 = 9 Subtract 3 from both sides:   4x = 6 Divide by 4:   x = 6/4 = 3/2 Now plug x = 3/2 into one of the equations (for example, y = -2x + 3):   y = -2(3/2) + 3   y = -3 + 3 = 0 Thus, the intersection point is (3/2, 0). Since the system has a unique solution, the correct answer is: (A) Exactly one solution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's analyze the system of equations. The first equation, \(3y = -6x + 9\), can be simplified to obtain \(y = -2x + 3\). The second equation is already given as \(y = -6x + 9\). Now, observe that they are two different lines: the first has a slope of -2 while the second has a slope of -6, meaning they are not parallel and must intersect at a point. Therefore, the system has exactly one solution where the two lines cross. So the answer is: (A) Exactly one solution. For an extra bit of fun, remember that when you have two straight lines, if they intersect, you're throwing a party for those solutions! If they happen to run forever side by side (parallel), no one gets to party—just two lonely lines!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad