Pregunta
upstudy study bank question image url

Consider the sequences. Use the equation to determine the \( 10^{\text {th }} \) term and the nth term. a) \( 10 ; 16 ; 22 ; 28 \) b) \( 33 ; 30 ; 27 ; 24 \) c) \( 5 ;-1 ;-7 \) d) \( -4 ;-11 ;-18:-25 \)

Ask by Norton Simpson. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The 10th term is 64, and the nth term is \(10 + 6(n-1)\). b) The 10th term is 6, and the nth term is \(33 - 3(n-1)\). c) The 10th term is -49, and the nth term is \(5 - 6(n-1)\). d) The 10th term is -67, and the nth term is \(-4 - 7(n-1)\).

Solución

To determine the \(10^{\text{th}}\) term and the nth term of each sequence, we need to identify the pattern or rule that governs the sequence. a) Sequence: \(10; 16; 22; 28\) The common difference between consecutive terms is \(16 - 10 = 6\). Therefore, the sequence follows an arithmetic progression with a common difference of 6. The nth term of an arithmetic progression can be found using the formula: \[a_n = a_1 + (n-1)d\] where: - \(a_n\) is the nth term - \(a_1\) is the first term - \(n\) is the term number - \(d\) is the common difference For this sequence, \(a_1 = 10\) and \(d = 6\). b) Sequence: \(33; 30; 27; 24\) The common difference between consecutive terms is \(30 - 33 = -3\). Therefore, the sequence follows an arithmetic progression with a common difference of -3. Using the same formula as above, we can find the nth term for this sequence. c) Sequence: \(5; -1; -7\) The common difference between consecutive terms is \(-1 - 5 = -6\). Therefore, the sequence follows an arithmetic progression with a common difference of -6. Using the same formula as above, we can find the nth term for this sequence. d) Sequence: \(-4; -11; -18; -25\) The common difference between consecutive terms is \(-11 - (-4) = -7\). Therefore, the sequence follows an arithmetic progression with a common difference of -7. Using the same formula as above, we can find the nth term for this sequence. Now, let's calculate the \(10^{\text{th}}\) term and the nth term for each sequence. Calculate the value by following steps: - step0: Calculate: \(10+\left(10-1\right)\times 6\) - step1: Subtract the numbers: \(10+9\times 6\) - step2: Multiply the numbers: \(10+54\) - step3: Add the numbers: \(64\) Calculate or simplify the expression \( 33 + (10-1)*(-3) \). Calculate the value by following steps: - step0: Calculate: \(33+\left(10-1\right)\left(-3\right)\) - step1: Subtract the numbers: \(33+9\left(-3\right)\) - step2: Multiply the numbers: \(33-27\) - step3: Subtract the numbers: \(6\) Calculate or simplify the expression \( 5 + (10-1)*(-6) \). Calculate the value by following steps: - step0: Calculate: \(5+\left(10-1\right)\left(-6\right)\) - step1: Subtract the numbers: \(5+9\left(-6\right)\) - step2: Multiply the numbers: \(5-54\) - step3: Subtract the numbers: \(-49\) Calculate or simplify the expression \( -4 + (10-1)*(-7) \). Calculate the value by following steps: - step0: Calculate: \(-4+\left(10-1\right)\left(-7\right)\) - step1: Subtract the numbers: \(-4+9\left(-7\right)\) - step2: Multiply the numbers: \(-4-63\) - step3: Subtract the numbers: \(-67\) a) The \(10^{\text{th}}\) term of the sequence is 64. b) The \(10^{\text{th}}\) term of the sequence is 6. c) The \(10^{\text{th}}\) term of the sequence is -49. d) The \(10^{\text{th}}\) term of the sequence is -67.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

For the first sequence \(10, 16, 22, 28\), we can see it's an arithmetic sequence with a common difference of 6. To find the \(n^{\text{th}}\) term, we can use the formula \(a_n = a_1 + (n-1)d\), where \(a_1 = 10\) and \(d = 6\). Thus, \(a_n = 10 + (n-1)6 = 6n + 4\). Plugging in \(n=10\), we get \(a_{10} = 6(10) + 4 = 64\). For the second sequence \(33, 30, 27, 24\), it's also an arithmetic progression but with a negative common difference of 3. Using the same formula, \(a_1 = 33\) and \(d = -3\), we get \(a_n = 33 + (n-1)(-3) = -3n + 36\). Thus, \(a_{10} = -3(10) + 36 = 6\). Now, moving on to the third sequence \(5, -1, -7\), this one has a common difference of -6. Here, \(a_1 = 5\) and \(d = -6\), so \(a_n = 5 + (n-1)(-6) = -6n + 11\). The \(n^{\text{th}}\) term is found with \(n=10\): \(a_{10} = -6(10) + 11 = -49\). Finally, for the last sequence \(-4, -11, -18, -25\), this is yet another arithmetic sequence with a common difference of -7. Here, \(a_1 = -4\) and \(d = -7\), giving us \(a_n = -4 + (n-1)(-7) = -7n + 3\). So plugging in \(n=10\), \(a_{10} = -7(10) + 3 = -67\). To summarize: 1. For \(10, 16, 22, 28\), \(10^{\text{th}}\) term is \(64\), \(n^{\text{th}}\) term is \(6n + 4\). 2. For \(33, 30, 27, 24\), \(10^{\text{th}}\) term is \(6\), \(n^{\text{th}}\) term is \(-3n + 36\). 3. For \(5, -1, -7\), \(10^{\text{th}}\) term is \(-49\), \(n^{\text{th}}\) term is \(-6n + 11\). 4. For \(-4, -11, -18, -25\), \(10^{\text{th}}\) term is \(-67\), \(n^{\text{th}}\) term is \(-7n + 3\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad