Pregunta
upstudy study bank question image url

2. Find from first principle, the derivatives of \( \sqrt{\tan x} \)

Ask by Ortiz Hardy. in Nepal
Nov 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( \sqrt{\tan x} \) is \( \frac{\sec^2 x}{2\sqrt{\tan x}} \).

Solución

To find the derivative of \( f(x) = \sqrt{\tan x} \) from first principles, we will use the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] First, we need to compute \( f(x+h) \): \[ f(x+h) = \sqrt{\tan(x+h)} \] Now, we can substitute this into the derivative formula: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{\tan(x+h)} - \sqrt{\tan x}}{h} \] To simplify this expression, we can multiply the numerator and the denominator by the conjugate of the numerator: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\tan(x+h)} - \sqrt{\tan x}\right)\left(\sqrt{\tan(x+h)} + \sqrt{\tan x}\right)}{h\left(\sqrt{\tan(x+h)} + \sqrt{\tan x}\right)} \] This simplifies the numerator: \[ \sqrt{\tan(x+h)} - \sqrt{\tan x} = \frac{\tan(x+h) - \tan x}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h \left(\sqrt{\tan(x+h)} + \sqrt{\tan x}\right)} \] Using the derivative of \( \tan x \), we know: \[ \frac{\tan(x+h) - \tan x}{h} \to \sec^2 x \quad \text{as } h \to 0 \] So we can write: \[ f'(x) = \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h} \cdot \frac{1}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} = \sec^2 x \cdot \frac{1}{\sqrt{\tan x} + \sqrt{\tan x}} \] As \( h \to 0 \), \( \sqrt{\tan(x+h)} \to \sqrt{\tan x} \), thus: \[ f'(x) = \sec^2 x \cdot \frac{1}{2\sqrt{\tan x}} \] Finally, we can express the derivative as: \[ f'(x) = \frac{\sec^2 x}{2\sqrt{\tan x}} \] Therefore, the derivative of \( \sqrt{\tan x} \) is: \[ \boxed{\frac{\sec^2 x}{2\sqrt{\tan x}}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the derivative of \( \sqrt{\tan x} \) from first principles, we start with the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] Let \( f(x) = \sqrt{\tan x} \). Then we need to compute \( f(x+h) \): \[ f(x+h) = \sqrt{\tan(x+h)} \] Now substituting into the derivative formula, we have: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{\tan(x+h)} - \sqrt{\tan x}}{h} \] To simplify this, we can multiply the numerator and denominator by the conjugate: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\tan(x+h)} - \sqrt{\tan x}\right) \left(\sqrt{\tan(x+h)} + \sqrt{\tan x}\right)}{h\left(\sqrt{\tan(x+h)} + \sqrt{\tan x}\right)} \] This simplifies to: \[ = \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h \left(\sqrt{\tan(x+h)} + \sqrt{\tan x}\right)} \] Using the fact that the derivative of \( \tan x \) is \( \sec^2 x \), we know that: \[ \tan(x+h) - \tan x = h\sec^2(x) + o(h) \quad \text{(as \( h \to 0 \))} \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{h \sec^2(x) + o(h)}{h \left(\sqrt{\tan(x+h)} + \sqrt{\tan x}\right)} \] Cancelling \( h \) yields: \[ = \lim_{h \to 0} \frac{\sec^2 x + \frac{o(h)}{h}}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} = \frac{\sec^2 x}{2\sqrt{\tan x}} \] Thus, the derivative is: \[ f'(x) = \frac{\sec^2 x}{2\sqrt{\tan x}} \] This finding showcases the beauty of calculus and how foundational principles lead to significant discoveries in mathematics! Now you can impress your friends with your knowledge of derivatives derived from first principles! And if you're ever stranded in the wilderness with nothing but math books, you'll know how to differentiate while sitting under a tree! Just remember to take notes—nature can be a bit noisy sometimes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad