Solve the following for the indicated variable. \[ F=\frac{9}{5} C+32 \text { for } C \text { (Celsius to Fahrenheit) } \] \( C=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To isolate \( C \) in the equation \( F = \frac{9}{5} C + 32 \), you can start by subtracting 32 from both sides: \[ F - 32 = \frac{9}{5} C \] Next, multiply both sides by \( \frac{5}{9} \) to solve for \( C \): \[ C = \frac{5}{9} (F - 32) \] So, the solved equation for Celsius in terms of Fahrenheit is: \[ C = \frac{5}{9} (F - 32) \] Now, isn't it fascinating that the equation \( C = \frac{5}{9} (F - 32) \) shows not only the conversion process but also highlights how temperature scales can lead to fascinating discussions about how we perceive warmth and coldness in our everyday lives? Imagine the chill of a winter day converting from Fahrenheit to Celsius and the warmth of a sunny beach pulling you back into Fahrenheit! In real-world scenarios, knowing how to convert between Celsius and Fahrenheit can help you follow recipes, weather forecasts, and travel plans seamlessly. For instance, if you’re diving into a dish that requires baking at a specific temperature, understanding whether the recipe uses Fahrenheit or Celsius could mean the difference between a perfectly baked cake and a kitchen disaster!
